Suppr超能文献

通过ZnO纳米棒阵列底层增强对2,4,6-三硝基甲苯的电化学检测性能。

Enhancement of electrochemical detection performance towards 2,4,6-trinitrotoluene by a bottom layer of ZnO nanorod arrays.

作者信息

Moon Sanghyeon, Yoo JeongEun, Lee Wonjoo, Lee Kiyoung

机构信息

Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.

Aerospace and Defence Reliability Center, Korea Testing Laboratory, 10 Chungui-ro, Jinju-si, Gyeongsangnam-do, 52852, Republic of Korea.

出版信息

Heliyon. 2023 May 1;9(5):e15880. doi: 10.1016/j.heliyon.2023.e15880. eCollection 2023 May.

Abstract

The ZnO nanostructure layers have been widely investigated as electrodes for sensors due to their intrinsic advantages such as high active area and low cost. In this work, to enhance the detection properties of ZnO nanostructural electrodes, self-organized ZnO nanorod arrays were synthesized using the chemical bath deposition (CBD) method on FTO glasses and ZnO nanoparticles. The fabricated ZnO electrodes on the two different substrates were characterized by SEM, TEM, XRD, and XPS. Subsequently, the detection performance of ZnO nanorod electrodes was electrochemically measured in a 2,4,6-trinitrotoluene (2,4,6-TNT) solution by CV and EIS. The differences in current densities between the ZnO electrodes were determined by the width of the ZnO nanorods, resulting in a ∼45% higher detection efficiency with F-CBD (the ZnO nanorods on FTO) electrodes compared to S-CBD (the ZnO nanorods on ZnO nanoparticles) electrodes.

摘要

由于具有诸如高活性面积和低成本等固有优势,ZnO纳米结构层作为传感器电极已得到广泛研究。在本工作中,为了增强ZnO纳米结构电极的检测性能,采用化学浴沉积(CBD)法在FTO玻璃和ZnO纳米颗粒上合成了自组装ZnO纳米棒阵列。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对在两种不同衬底上制备的ZnO电极进行了表征。随后,通过循环伏安法(CV)和电化学阻抗谱(EIS)在2,4,6-三硝基甲苯(2,4,6-TNT)溶液中对ZnO纳米棒电极的检测性能进行了电化学测量。ZnO电极之间的电流密度差异由ZnO纳米棒的宽度决定,与S-CBD(ZnO纳米颗粒上的ZnO纳米棒)电极相比,F-CBD(FTO上的ZnO纳米棒)电极的检测效率提高了约45%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6140/10192408/61dc83e703e0/sc1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验