Suppr超能文献

无校准和硬件高效的脑机接口神经尖峰检测。

Calibration-Free and Hardware-Efficient Neural Spike Detection for Brain Machine Interfaces.

出版信息

IEEE Trans Biomed Circuits Syst. 2023 Aug;17(4):725-740. doi: 10.1109/TBCAS.2023.3278531. Epub 2023 Oct 6.

Abstract

Recent translational efforts in brain-machine interfaces (BMI) are demonstrating the potential to help people with neurological disorders. The current trend in BMI technology is to increase the number of recording channels to the thousands, resulting in the generation of vast amounts of raw data. This in turn places high bandwidth requirements for data transmission, which increases power consumption and thermal dissipation of implanted systems. On-implant compression and/or feature extraction are therefore becoming essential to limiting this increase in bandwidth, but add further power constraints - the power required for data reduction must remain less than the power saved through bandwidth reduction. Spike detection is a common feature extraction technique used for intracortical BMIs. In this article, we develop a novel firing-rate-based spike detection algorithm that requires no external training and is hardware efficient and therefore ideally suited for real-time applications. Key performance and implementation metrics such as detection accuracy, adaptability in chronic deployment, power consumption, area utilization, and channel scalability are benchmarked against existing methods using various datasets. The algorithm is first validated using a reconfigurable hardware (FPGA) platform and then ported to a digital ASIC implementation in both 65 nm and 0.18 μm CMOS technologies. The 128-channel ASIC design implemented in a 65 nm CMOS technology occupies 0.096 mm silicon area and consumes 4.86 μW from a 1.2 V power supply. The adaptive algorithm achieves a 96% spike detection accuracy on a commonly used synthetic dataset, without the need for any prior training.

摘要

近年来,脑机接口(BMI)领域的研究进展表明,该技术具有帮助神经疾病患者的潜力。目前,BMI 技术的发展趋势是增加记录通道的数量到数千个,从而产生大量原始数据。这反过来又对数据传输提出了很高的带宽要求,增加了植入系统的功耗和热耗散。因此,在植入物上进行压缩和/或特征提取对于限制带宽的增加变得至关重要,但这又增加了功率限制 - 数据减少所需的功率必须小于通过带宽减少节省的功率。尖峰检测是用于皮质内 BMI 的常用特征提取技术。在本文中,我们开发了一种新颖的基于发放率的尖峰检测算法,该算法不需要外部训练,具有硬件效率,因此非常适合实时应用。使用各种数据集,针对现有方法,对关键性能和实现指标(如检测精度、在慢性部署中的适应性、功耗、面积利用率和通道可扩展性)进行了基准测试。该算法首先在可重构硬件(FPGA)平台上进行验证,然后在 65nm 和 0.18μm CMOS 技术的数字 ASIC 中实现。在 65nm CMOS 技术中实现的 128 通道 ASIC 设计占用 0.096mm²的硅面积,从 1.2V 电源汲取 4.86µW 的功率。自适应算法在常用的合成数据集上实现了 96%的尖峰检测精度,无需任何预先训练。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验