Suppr超能文献

阳离子驱动的双层氧化钒和氧化石墨烯纳米片组装形成二维异质结构电极用于锂离子电池。

Cation-Driven Assembly of Bilayered Vanadium Oxide and Graphene Oxide Nanoflakes to Form Two-Dimensional Heterostructure Electrodes for Li-Ion Batteries.

机构信息

Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Jun 7;15(22):26525-26537. doi: 10.1021/acsami.2c22916. Epub 2023 May 22.

Abstract

Lithium preintercalated bilayered vanadium oxide (LVO or δ-LiVO·HO) and graphene oxide (GO) nanoflakes were assembled using a concentrated lithium chloride solution and annealed under vacuum at 200 °C to form two-dimensional (2D) δ-LiVO·HO and reduced GO (rGO) heterostructures. We found that the Li ions from LiCl enhanced the oxide/carbon heterointerface formation and served as stabilizing ions to improve structural and electrochemical stability. The graphitic content of the heterostructure could be easily controlled by changing the initial GO concentration prior to assembly. We found that increasing the GO content in our heterostructure composition helped inhibit the electrochemical degradation of LVO during cycling and improved the rate capability of the heterostructure. A combination of scanning electron microscopy and X-ray diffraction was used to help confirm that a 2D heterointerface formed between LVO and GO, and the final phase composition was determined using energy-dispersive X-ray spectroscopy and thermogravimetric analysis. Scanning transmission electron microscopy and electron energy-loss spectroscopy were additionally used to examine the heterostructures at high resolution, mapping the orientations of rGO and LVO layers and locally imaging their interlayer spacings. Further, electrochemical cycling of the cation-assembled LVO/rGO heterostructures in Li-ion cells with a non-aqueous electrolyte revealed that increasing the rGO content led to improved cycling stability and rate performance, despite slightly decreased charge storage capacity. The heterostructures with 0, 10, 20, and 35 wt % rGO exhibited capacities of 237, 216, 174, and 150 mAh g, respectively. Moreover, the LVO/rGO-35 wt % and LVO/rGO-20 wt % heterostructures retained 75% (110 mAh g) and 67% (120 mAh g) of their initial capacities after increasing the specific current from 20 to 200 mA g, while the LVO/rGO-10 wt % sample retained only 48% (107 mAh g) of its initial capacity under the same cycling conditions. In addition, the cation-assembled LVO/rGO electrodes exhibited enhanced electrochemical stability compared to electrodes prepared through physical mixing of LVO and GO nanoflakes in the same ratios as the heterostructure electrodes, further revealing the stabilizing effect of a 2D heterointerface. The cation-driven assembly approach, explored in this work using Li cations, was found to induce and stabilize the formation of stacked 2D layers of rGO and exfoliated LVO. The reported assembly methodology can be applied for a variety of systems utilizing 2D materials with complementary properties for applications as electrodes in energy storage devices.

摘要

锂插层双层氧化钒(LVO 或 δ-LiVO·HO)和氧化石墨烯(GO)纳米片使用浓缩氯化锂溶液组装,并在 200°C 下真空退火以形成二维(2D)δ-LiVO·HO 和还原氧化石墨烯(rGO)异质结构。我们发现,LiCl 中的 Li 离子增强了氧化物/碳异质界面的形成,并作为稳定离子,提高了结构和电化学稳定性。通过改变组装前 GO 的初始浓度,可以很容易地控制异质结构中的石墨含量。我们发现,增加异质结构组成中的 GO 含量有助于抑制 LVO 在循环过程中的电化学降解,并提高异质结构的倍率性能。扫描电子显微镜和 X 射线衍射的组合用于帮助确认 LVO 和 GO 之间形成了 2D 异质界面,最终的相组成通过能量色散 X 射线光谱和热重分析确定。扫描透射电子显微镜和电子能量损失光谱还用于在高分辨率下检查异质结构,映射 rGO 和 LVO 层的取向,并局部成像它们的层间间距。此外,在具有非水电解质的锂离子电池中对阳离子组装的 LVO/rGO 异质结构进行的电化学循环表明,尽管充电存储容量略有降低,但增加 rGO 含量可提高循环稳定性和倍率性能。含有 0、10、20 和 35wt%rGO 的异质结构分别表现出 237、216、174 和 150mAh g 的容量。此外,LVO/rGO-35wt%和 LVO/rGO-20wt%异质结构在将比电流从 20mA g 增加到 200mA g 时,保留了其初始容量的 75%(110mAh g)和 67%(120mAh g),而 LVO/rGO-10wt%样品在相同的循环条件下仅保留了其初始容量的 48%(107mAh g)。此外,与以相同比例物理混合 LVO 和 GO 纳米片制备的电极相比,阳离子组装的 LVO/rGO 电极表现出增强的电化学稳定性,进一步揭示了二维异质界面的稳定作用。在这项工作中探索的阳离子驱动的组装方法,利用 Li 阳离子,被发现诱导和稳定堆叠的 rGO 和剥离的 LVO 的二维层的形成。所报道的组装方法可以应用于利用具有互补性质的二维材料的各种系统,作为储能设备中的电极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验