Suppr超能文献

端到端和高泛化能力的弱监督深度卷积网络用于从全幻灯片图像分类肺癌。

E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image.

机构信息

Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China.

Department of Tumor Biobank, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China.

出版信息

Med Image Anal. 2023 Aug;88:102837. doi: 10.1016/j.media.2023.102837. Epub 2023 May 13.

Abstract

Efficient and accurate distinction of histopathological subtype of lung cancer is quite critical for the individualized treatment. So far, artificial intelligence techniques have been developed, whose performance yet remained debatable on more heterogenous data, hindering their clinical deployment. Here, we propose an end-to-end, well-generalized and data-efficient weakly supervised deep learning-based method. The method, end-to-end feature pyramid deep multi-instance learning model (E2EFP-MIL), contains an iterative sampling module, a trainable feature pyramid module and a robust feature aggregation module. E2EFP-MIL uses end-to-end learning to extract generalized morphological features automatically and identify discriminative histomorphological patterns. This method is trained with 1007 whole slide images (WSIs) of lung cancer from TCGA, with AUCs of 0.95-0.97 in test sets. We validated E2EFP-MIL in 5 real-world external heterogenous cohorts including nearly 1600 WSIs from both United States and China with AUCs of 0.94-0.97, and found that 100-200 training images are enough to achieve an AUC of >0.9. E2EFP-MIL overperforms multiple state-of-the-art MIL-based methods with high accuracy and low hardware requirements. Excellent and robust results prove generalizability and effectiveness of E2EFP-MIL in clinical practice. Our code is available at https://github.com/raycaohmu/E2EFP-MIL.

摘要

准确区分肺癌的组织病理学亚型对于个体化治疗至关重要。迄今为止,已经开发出了人工智能技术,但在更异构的数据上,其性能仍存在争议,这阻碍了它们在临床上的部署。在这里,我们提出了一种端到端的、泛化能力强且数据高效的基于弱监督的深度学习方法。该方法,端到端特征金字塔深度多实例学习模型(E2EFP-MIL),包含一个迭代采样模块、一个可训练的特征金字塔模块和一个稳健的特征聚合模块。E2EFP-MIL 采用端到端学习来自动提取通用形态特征,并识别有区别的组织形态模式。该方法在 TCGA 的 1007 张肺癌全幻灯片图像(WSI)上进行训练,在测试集中的 AUC 为 0.95-0.97。我们在 5 个真实的外部异构队列中验证了 E2EFP-MIL,其中包括来自美国和中国的近 1600 张 WSI,AUC 为 0.94-0.97,并且发现 100-200 张训练图像足以达到 AUC>0.9。E2EFP-MIL 的表现优于多个基于 MIL 的最先进方法,具有高精度和低硬件要求。优异而稳健的结果证明了 E2EFP-MIL 在临床实践中的泛化能力和有效性。我们的代码可在 https://github.com/raycaohmu/E2EFP-MIL 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验