Department of Systems Biology, City of Hope Beckman Research Institute, Monrovia, California, USA.
The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.
J Immunother Cancer. 2023 May;11(5). doi: 10.1136/jitc-2022-006649.
Type I interferons (IFN-Is), secreted by hematopoietic cells, drive immune surveillance of solid tumors. However, the mechanisms of suppression of IFN-I-driven immune responses in hematopoietic malignancies including B-cell acute lymphoblastic leukemia (B-ALL) are unknown.
Using high-dimensional cytometry, we delineate the defects in IFN-I production and IFN-I-driven immune responses in high-grade primary human and mouse B-ALLs. We develop natural killer (NK) cells as therapies to counter the intrinsic suppression of IFN-I production in B-ALL.
We find that high expression of IFN-I signaling genes predicts favorable clinical outcome in patients with B-ALL, underscoring the importance of the IFN-I pathway in this malignancy. We show that human and mouse B-ALL microenvironments harbor an intrinsic defect in paracrine (plasmacytoid dendritic cell) and/or autocrine (B-cell) IFN-I production and IFN-I-driven immune responses. Reduced IFN-I production is sufficient for suppressing the immune system and promoting leukemia development in mice prone to MYC-driven B-ALL. Among anti-leukemia immune subsets, suppression of IFN-I production most markedly lowers the transcription of IL-15 and reduces NK-cell number and effector maturation in B-ALL microenvironments. Adoptive transfer of healthy NK cells significantly prolongs survival of overt ALL-bearing transgenic mice. Administration of IFN-Is to B-ALL-prone mice reduces leukemia progression and increases the frequencies of total NK and NK-cell effectors in circulation. Ex vivo treatment of malignant and non-malignant immune cells in primary mouse B-ALL microenvironments with IFN-Is fully restores proximal IFN-I signaling and partially restores IL-15 production. In B-ALL patients, the suppression of IL-15 is the most severe in difficult-to-treat subtypes with MYC overexpression. MYC overexpression promotes sensitivity of B-ALL to NK cell-mediated killing. To counter the suppressed IFN-I-induced IL-15 production in MYC human B-ALL, we CRISPRa-engineered a novel human NK-cell line that secretes IL-15. CRISPRa IL-15-secreting human NK cells kill high-grade human B-ALL in vitro and block leukemia progression in vivo more effectively than NK cells that do not produce IL-15.
We find that restoration of the intrinsically suppressed IFN-I production in B-ALL underlies the therapeutic efficacy of IL-15-producing NK cells and that such NK cells represent an attractive therapeutic solution for the problem of drugging MYC in high-grade B-ALL.
I 型干扰素(IFN-Is)由造血细胞分泌,可驱动实体肿瘤的免疫监视。然而,包括 B 细胞急性淋巴细胞白血病(B-ALL)在内的造血恶性肿瘤中抑制 IFN-I 驱动的免疫反应的机制尚不清楚。
我们使用高维细胞术描绘了高级别原发性人源和鼠源 B-ALL 中 IFN-I 产生和 IFN-I 驱动免疫反应的缺陷。我们开发自然杀伤(NK)细胞作为疗法来对抗 B-ALL 中 IFN-I 产生的内在抑制。
我们发现 IFN-I 信号通路基因的高表达预示着 B-ALL 患者的临床预后良好,这突显了 IFN-I 通路在这种恶性肿瘤中的重要性。我们表明,人源和鼠源 B-ALL 微环境中存在旁分泌(浆细胞样树突状细胞)和/或自分泌(B 细胞)IFN-I 产生和 IFN-I 驱动免疫反应的内在缺陷。IFN-I 产生减少足以抑制免疫系统并促进易发生 MYC 驱动的 B-ALL 的小鼠白血病的发展。在抗白血病免疫亚群中,抑制 IFN-I 产生最显著地降低了 IL-15 的转录,并减少了 B-ALL 微环境中的 NK 细胞数量和效应器成熟。健康 NK 细胞的过继转移可显著延长显性 ALL 携带转基因小鼠的存活时间。IFN-Is 给药可降低 B-ALL 易感小鼠的白血病进展,并增加循环中总 NK 和 NK 细胞效应物的频率。在原发性鼠源 B-ALL 微环境中,用 IFN-Is 对恶性和非恶性免疫细胞进行离体处理,可完全恢复近端 IFN-I 信号传导,并部分恢复 IL-15 的产生。在 B-ALL 患者中,IL-15 的抑制在 MYC 过表达的难以治疗的亚型中最为严重。MYC 过表达促进了 B-ALL 对 NK 细胞介导的杀伤的敏感性。为了对抗 MYC 人源 B-ALL 中受抑制的 IFN-I 诱导的 IL-15 产生,我们通过 CRISPRa 工程改造了一种新型人源 NK 细胞系,该细胞系可分泌 IL-15。CRISPRa IL-15 分泌的人源 NK 细胞在体外更有效地杀伤高级别人源 B-ALL,并阻止体内白血病进展,效果优于不产生 IL-15 的 NK 细胞。
我们发现,B-ALL 中内在抑制的 IFN-I 产生的恢复是 IL-15 产生的 NK 细胞治疗效果的基础,并且此类 NK 细胞代表了治疗 MYC 在高级别 B-ALL 中问题的有吸引力的治疗方法。