Suppr超能文献

使用深度学习进行眼底图像的激光光凝自主筛查。

Autonomous screening for laser photocoagulation in fundus images using deep learning.

机构信息

AEYE Health, New York, New York, USA.

AEYE Health, New York, New York, USA

出版信息

Br J Ophthalmol. 2024 May 21;108(5):742-746. doi: 10.1136/bjo-2023-323376.

Abstract

BACKGROUND

Diabetic retinopathy (DR) is a leading cause of blindness in adults worldwide. Artificial intelligence (AI) with autonomous deep learning algorithms has been increasingly used in retinal image analysis, particularly for the screening of referrable DR. An established treatment for proliferative DR is panretinal or focal laser photocoagulation. Training autonomous models to discern laser patterns can be important in disease management and follow-up.

METHODS

A deep learning model was trained for laser treatment detection using the EyePACs dataset. Data was randomly assigned, by participant, into development (n=18 945) and validation (n=2105) sets. Analysis was conducted at the single image, eye, and patient levels. The model was then used to filter input for three independent AI models for retinal indications; changes in model efficacy were measured using area under the receiver operating characteristic curve (AUC) and mean absolute error (MAE).

RESULTS

On the task of laser photocoagulation detection: AUCs of 0.981, 0.95, and 0.979 were achieved at the patient, image, and eye levels, respectively. When analysing independent models, efficacy was shown to improve across the board after filtering. Diabetic macular oedema detection on images with artefacts was AUC 0.932 vs AUC 0.955 on those without. Participant sex detection on images with artefacts was AUC 0.872 vs AUC 0.922 on those without. Participant age detection on images with artefacts was MAE 5.33 vs MAE 3.81 on those without.

CONCLUSION

The proposed model for laser treatment detection achieved high performance on all analysis metrics and has been demonstrated to positively affect the efficacy of different AI models, suggesting that laser detection can generally improve AI-powered applications for fundus images.

摘要

背景

糖尿病视网膜病变(DR)是全球成年人致盲的主要原因。具有自主深度学习算法的人工智能(AI)越来越多地用于视网膜图像分析,特别是用于可转诊 DR 的筛查。增殖性 DR 的既定治疗方法是全视网膜或局部激光光凝。训练自主模型来辨别激光模式对于疾病管理和随访非常重要。

方法

使用 EyePACs 数据集训练用于激光治疗检测的深度学习模型。通过参与者,将数据随机分配到开发(n=18945)和验证(n=2105)组中。在单个图像、眼睛和患者水平上进行分析。然后,使用该模型为三个独立的视网膜指示 AI 模型过滤输入;使用接收器操作特征曲线(AUC)和平均绝对误差(MAE)测量模型功效的变化。

结果

在激光光凝检测任务中:在患者、图像和眼睛水平上分别达到 0.981、0.95 和 0.979 的 AUC。在分析独立模型时,在过滤后,整体疗效显示有所提高。在有伪影的图像上进行糖尿病性黄斑水肿检测的 AUC 为 0.932,而在无伪影的图像上为 0.955。在有伪影的图像上进行参与者性别检测的 AUC 为 0.872,而在无伪影的图像上为 0.922。在有伪影的图像上进行参与者年龄检测的 MAE 为 5.33,而在无伪影的图像上为 3.81。

结论

所提出的激光治疗检测模型在所有分析指标上均表现出优异的性能,并且已证明可积极影响不同 AI 模型的功效,这表明激光检测通常可以改善基于 AI 的眼底图像应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cb/11137462/1c9c68d4dc0b/bjo-2023-323376f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验