Suppr超能文献

基于CT的腮腺多形性腺瘤瘤内及瘤周影像组学用于鉴别完整与不完整包膜特征:一项双中心研究

CT based intratumor and peritumoral radiomics for differentiating complete from incomplete capsular characteristics of parotid pleomorphic adenoma: a two-center study.

作者信息

Li Shuang, Su Xiaorui, Ning Youquan, Zhang Simin, Shao Hanbing, Wan Xinyue, Tan Qiaoyue, Yang Xibiao, Peng Juan, Gong Qiyong, Yue Qiang

机构信息

Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.

Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.

出版信息

Discov Oncol. 2023 May 22;14(1):76. doi: 10.1007/s12672-023-00665-8.

Abstract

OBJECTIVE

Capsular characteristics of pleomorphic adenoma (PA) has various forms. Patients without complete capsule has a higher risk of recurrence than patients with complete capsule. We aimed to develop and validate CT-based intratumoral and peritumoral radiomics models to make a differential diagnosis between parotid PA with and without complete capsule.

METHODS

Data of 260 patients (166 patients with PA from institution 1 (training set) and 94 patients (test set) from institution 2) were retrospectively analyzed. Three Volume of interest (VOIs) were defined in the CT images of each patient: tumor volume of interest (VOI), VOI, and VOI. Radiomics features were extracted from each VOI and used to train nine different machine learning algorithms. Model performance was evaluated using receiver operating characteristic (ROC) curves and the area under the curve (AUC).

RESULTS

The results showed that the radiomics models based on features from VOI achieved higher AUCs compared to models based on features from VOI. The best performing model was Linear discriminant analysis, which achieved an AUC of 0.86 in the tenfold cross-validation and 0.869 in the test set. The model was based on 15 features, including shape-based features and texture features.

CONCLUSIONS

We demonstrated the feasibility of combining artificial intelligence with CT-based peritumoral radiomics features can be used to accurately predict capsular characteristics of parotid PA. This may assist in clinical decision-making by preoperative identification of capsular characteristics of parotid PA.

摘要

目的

多形性腺瘤(PA)的包膜特征有多种形式。无完整包膜的患者比有完整包膜的患者复发风险更高。我们旨在开发并验证基于CT的瘤内和瘤周放射组学模型,以鉴别腮腺PA有无完整包膜。

方法

回顾性分析260例患者的数据(来自机构1的166例PA患者为训练集,来自机构2的94例患者为测试集)。在每位患者的CT图像中定义三个感兴趣体积(VOI):肿瘤感兴趣体积(VOI)、VOI和VOI。从每个VOI中提取放射组学特征,并用于训练九种不同的机器学习算法。使用受试者工作特征(ROC)曲线和曲线下面积(AUC)评估模型性能。

结果

结果表明,基于VOI特征的放射组学模型比基于VOI特征的模型具有更高的AUC。表现最佳的模型是线性判别分析,在十折交叉验证中AUC为0.86,在测试集中为0.869。该模型基于15个特征,包括基于形状的特征和纹理特征。

结论

我们证明了将人工智能与基于CT的瘤周放射组学特征相结合可用于准确预测腮腺PA包膜特征的可行性。这可能有助于通过术前识别腮腺PA的包膜特征来辅助临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61f8/10203084/62cdcbb41c9c/12672_2023_665_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验