Suppr超能文献

基于 Fuhrman 核分级预测透明细胞肾细胞癌:感兴趣区勾画策略对基于机器学习的动态增强 CT 放射组学分析的影响。

Fuhrman nuclear grade prediction of clear cell renal cell carcinoma: influence of volume of interest delineation strategies on machine learning-based dynamic enhanced CT radiomics analysis.

机构信息

Department of Radiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, 510180, China.

School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China.

出版信息

Eur Radiol. 2022 Apr;32(4):2340-2350. doi: 10.1007/s00330-021-08322-w. Epub 2021 Oct 12.

Abstract

OBJECTIVE

To investigate the influence of different volume of interest (VOI) delineation strategies on machine learning-based predictive models for discrimination between low and high nuclear grade clear cell renal cell carcinoma (ccRCC) on dynamic contrast-enhanced CT.

METHODS

This study retrospectively collected 177 patients with pathologically proven ccRCC (124 low-grade; 53 high-grade). Tumor VOI was manually segmented, followed by artificially introducing uncertainties as: (i) contour-focused VOI, (ii) margin erosion of 2 or 4 mm, and (iii) margin dilation (2, 4, or 6 mm) inclusive of perirenal fat, peritumoral renal parenchyma, or both. Radiomics features were extracted from four-phase CT images (unenhanced phase (UP), corticomedullary phase (CMP), nephrographic phase (NP), excretory phase (EP)). Different combinations of four-phasic features for each VOI delineation strategy were used to build 176 classification models. The best VOI delineation strategy and superior CT phase were identified and the top-ranked features were analyzed.

RESULTS

Features extracted from UP and EP outperformed features from other single/combined phase(s). Shape features and first-order statistics features exhibited superior discrimination. The best performance (ACC 81%, SEN 67%, SPE 87%, AUC 0.87) was achieved with radiomics features extracted from UP and EP based on contour-focused VOI.

CONCLUSION

Shape and first-order features extracted from UP + EP images are better feature representations. Contour-focused VOI erosion by 2 mm or dilation by 4 mm within peritumor renal parenchyma exerts limited impact on discriminative performance. It provides a reference for segmentation tolerance in radiomics-based modeling for ccRCC nuclear grading.

KEY POINTS

• Lesion delineation uncertainties are tolerated within a VOI erosion range of 2 mm or dilation range of 4 mm within peritumor renal parenchyma for radiomics-based ccRCC nuclear grading. • Radiomics features extracted from unenhanced phase and excretory phase are superior to other single/combined phase(s) at differentiating high vs low nuclear grade ccRCC. • Shape features and first-order statistics features showed superior discriminative capability compared to texture features.

摘要

目的

研究不同感兴趣区(VOI)勾画策略对基于机器学习的鉴别低核级和高核级透明细胞肾细胞癌(ccRCC)的动态对比增强 CT 预测模型的影响。

方法

本研究回顾性收集了 177 例经病理证实的 ccRCC 患者(低级别 124 例,高级别 53 例)。手动勾画肿瘤 VOI,随后引入人为不确定性:(i)轮廓聚焦 VOI,(ii)2 或 4mm 的边界侵蚀,以及(iii)包含肾周脂肪、肿瘤旁肾实质或两者的 2、4 或 6mm 的边界扩张。从四期 CT 图像(平扫期(UP)、皮质期(CMP)、肾实质期(NP)、排泄期(EP))中提取放射组学特征。对每个 VOI 勾画策略的不同四期特征组合进行 176 次分类模型构建。确定最佳 VOI 勾画策略和最佳 CT 期,并分析最优特征。

结果

来自 UP 和 EP 的特征优于来自其他单期/组合期的特征。形状特征和一阶统计特征表现出较好的鉴别力。基于轮廓聚焦 VOI,来自 UP 和 EP 的放射组学特征提取的最佳性能(ACC 81%、SEN 67%、SPE 87%、AUC 0.87)。

结论

来自 UP+EP 图像的形状和一阶特征是更好的特征表示。肿瘤旁肾实质内 2mm 的轮廓聚焦 VOI 侵蚀或 4mm 的扩张对鉴别性能的影响有限。这为基于放射组学的 ccRCC 核分级建模中的分割容差提供了参考。

重点

·在肿瘤旁肾实质内 2mm 的 VOI 侵蚀或 4mm 的扩张范围内,病灶勾画的不确定性在基于放射组学的 ccRCC 核分级中是可以容忍的。·在鉴别高低核级 ccRCC 方面,来自未增强期和排泄期的放射组学特征优于其他单期/组合期。·与纹理特征相比,形状特征和一阶统计特征具有更好的鉴别能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验