Computer Aided Medical Procedures, Technical University of Munich, Munich, Germany.
Int J Comput Assist Radiol Surg. 2023 Jul;18(7):1209-1215. doi: 10.1007/s11548-023-02939-6. Epub 2023 May 23.
Recent advances in Surgical Data Science (SDS) have contributed to an increase in video recordings from hospital environments. While methods such as surgical workflow recognition show potential in increasing the quality of patient care, the quantity of video data has surpassed the scale at which images can be manually anonymized. Existing automated 2D anonymization methods under-perform in Operating Rooms (OR), due to occlusions and obstructions. We propose to anonymize multi-view OR recordings using 3D data from multiple camera streams.
RGB and depth images from multiple cameras are fused into a 3D point cloud representation of the scene. We then detect each individual's face in 3D by regressing a parametric human mesh model onto detected 3D human keypoints and aligning the face mesh with the fused 3D point cloud. The mesh model is rendered into every acquired camera view, replacing each individual's face.
Our method shows promise in locating faces at a higher rate than existing approaches. DisguisOR produces geometrically consistent anonymizations for each camera view, enabling more realistic anonymization that is less detrimental to downstream tasks.
Frequent obstructions and crowding in operating rooms leaves significant room for improvement for off-the-shelf anonymization methods. DisguisOR addresses privacy on a scene level and has the potential to facilitate further research in SDS.
最近在外科数据科学(SDS)方面的进展促进了医院环境中视频记录的增加。虽然手术流程识别等方法在提高患者护理质量方面显示出了潜力,但视频数据的数量已经超过了可以手动匿名化图像的规模。现有的自动化 2D 匿名化方法在手术室(OR)中表现不佳,这是由于遮挡和障碍物造成的。我们建议使用来自多个摄像机流的 3D 数据对多视图 OR 记录进行匿名化。
将来自多个摄像机的 RGB 和深度图像融合到场景的 3D 点云表示中。然后,我们通过将参数化人体网格模型回归到检测到的 3D 人体关键点并将人脸网格与融合的 3D 点云对齐,在 3D 中检测每个人的脸。网格模型被渲染到每个获取的摄像机视图中,以替换每个人的脸。
我们的方法在定位人脸方面的表现优于现有的方法,定位人脸的速度更高。DisguisOR 为每个摄像机视图生成一致的几何匿名化,从而实现更逼真的匿名化,对下游任务的不利影响更小。
手术室中频繁的障碍物和拥挤为现成的匿名化方法留下了很大的改进空间。DisguisOR 从场景级别解决了隐私问题,并有潜力促进 SDS 的进一步研究。