Computer Aided Medical Procedures, Technische Universität München, Garching, Germany.
Google, Zurich, Switzerland.
Int J Comput Assist Radiol Surg. 2024 May;19(5):791-799. doi: 10.1007/s11548-023-03022-w. Epub 2023 Oct 12.
Surgical procedures take place in highly complex operating rooms (OR), involving medical staff, patients, devices and their interactions. Until now, only medical professionals are capable of comprehending these intricate links and interactions. This work advances the field toward automated, comprehensive and semantic understanding and modeling of the OR domain by introducing semantic scene graphs (SSG) as a novel approach to describing and summarizing surgical environments in a structured and semantically rich manner.
We create the first open-source 4D SSG dataset. 4D-OR includes simulated total knee replacement surgeries captured by RGB-D sensors in a realistic OR simulation center. It includes annotations for SSGs, human and object pose, clinical roles and surgical phase labels. We introduce a neural network-based SSG generation pipeline for semantic reasoning in the OR and apply our approach to two downstream tasks: clinical role prediction and surgical phase recognition.
We show that our pipeline can successfully reason within the OR domain. The capabilities of our scene graphs are further highlighted by their successful application to clinical role prediction and surgical phase recognition tasks.
This work paves the way for multimodal holistic operating room modeling, with the potential to significantly enhance the state of the art in surgical data analysis, such as enabling more efficient and precise decision-making during surgical procedures, and ultimately improving patient safety and surgical outcomes. We release our code and dataset at github.com/egeozsoy/4D-OR.
手术是在高度复杂的手术室(OR)中进行的,涉及医务人员、患者、设备及其相互作用。到目前为止,只有医疗专业人员能够理解这些复杂的联系和相互作用。本研究通过引入语义场景图(SSG)作为一种新的方法,以结构化和语义丰富的方式描述和总结手术环境,将领域推进到 OR 领域的自动化、全面和语义理解与建模。
我们创建了第一个开源的 4D SSG 数据集。4D-OR 包括在逼真的 OR 模拟中心由 RGB-D 传感器捕获的模拟全膝关节置换手术。它包括 SSG、人体和物体姿态、临床角色和手术阶段标签的注释。我们引入了一种基于神经网络的 SSG 生成管道,用于 OR 中的语义推理,并将我们的方法应用于两个下游任务:临床角色预测和手术阶段识别。
我们表明,我们的流水线可以成功地在 OR 领域进行推理。我们的场景图的功能通过其在临床角色预测和手术阶段识别任务中的成功应用得到了进一步的强调。
这项工作为多模态整体手术室建模铺平了道路,有可能显著提高手术数据分析的最新水平,例如在手术过程中实现更高效和精确的决策,并最终提高患者安全和手术效果。我们在 github.com/egeozsoy/4D-OR 上发布了我们的代码和数据集。