Suppr超能文献

手术室中的面部检测:最先进方法与自监督方法的比较。

Face detection in the operating room: comparison of state-of-the-art methods and a self-supervised approach.

机构信息

ICube, University of Strasbourg, CNRS, IHU Strasbourg, Strasbourg, France.

Radiology Department, University Hospital of Strasbourg, Strasbourg, France.

出版信息

Int J Comput Assist Radiol Surg. 2019 Jun;14(6):1049-1058. doi: 10.1007/s11548-019-01944-y. Epub 2019 Apr 9.

Abstract

PURPOSE

Face detection is a needed component for the automatic analysis and assistance of human activities during surgical procedures. Efficient face detection algorithms can indeed help to detect and identify the persons present in the room and also be used to automatically anonymize the data. However, current algorithms trained on natural images do not generalize well to the operating room (OR) images. In this work, we provide a comparison of state-of-the-art face detectors on OR data and also present an approach to train a face detector for the OR by exploiting non-annotated OR images.

METHODS

We propose a comparison of six state-of-the-art face detectors on clinical data using multi-view OR faces, a dataset of OR images capturing real surgical activities. We then propose to use self-supervision, a domain adaptation method, for the task of face detection in the OR. The approach makes use of non-annotated images to fine-tune a state-of-the-art detector for the OR without using any human supervision.

RESULTS

The results show that the best model, namely the tiny face detector, yields an average precision of 0.556 at intersection over union of 0.5. Our self-supervised model using non-annotated clinical data outperforms this result by 9.2%.

CONCLUSION

We present the first comparison of state-of-the-art face detectors on OR images and show that results can be significantly improved by using self-supervision on non-annotated data.

摘要

目的

面部检测是手术过程中自动分析和辅助人体活动所必需的组成部分。高效的面部检测算法确实有助于检测和识别房间内的人员,还可用于自动对数据进行匿名化处理。然而,在自然图像上训练的现有算法不能很好地泛化到手术室(OR)图像。在这项工作中,我们比较了 OR 数据上的最先进的面部检测器,并提出了一种通过利用未标注的 OR 图像来训练 OR 面部检测器的方法。

方法

我们使用多视图 OR 面部数据集(捕获真实手术活动的 OR 图像数据集),对六种最先进的面部检测器在临床数据上的性能进行了比较。然后,我们提出使用自监督,一种域自适应方法,来完成 OR 中的面部检测任务。该方法利用未标注的图像对最先进的 OR 检测器进行微调,而无需使用任何人工监督。

结果

结果表明,最佳模型(即 tiny 面部检测器)在交并比为 0.5 时的平均精度为 0.556。我们使用未标注的临床数据的自监督模型比这一结果高出 9.2%。

结论

我们首次对 OR 图像上的最先进的面部检测器进行了比较,并表明通过使用未标注数据进行自监督,可以显著提高结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验