Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic.
Centre de Biophysique Moléculaire, CNRS-UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France.
Dalton Trans. 2023 Jun 13;52(23):7936-7947. doi: 10.1039/d3dt00701d.
A new 15-membered pyridine-based macrocyclic ligand containing one acetate pendant arm (-carboxymethyl-3,12,18-triaza-6,9-dioxabicyclo[12.3.1]octadeca-1(18),14,16-triene, L1) was synthesized and its Mn(II) complex MnL1 was investigated in the context of MRI contrast agent development. The X-ray molecular structure of MnL1 confirmed a coordination number of seven with an axially compressed pentagonal bipyramidal geometry and one coordination site available for an inner-sphere water molecule. The protonation constants of L1 and the stability constants of Mn(II), Zn(II), Cu(II) and Ca(II) complexes were determined by potentiometry, and revealed higher thermodynamic stabilities in comparison with complexes of 15-pyNO, the parent macrocycle without an acetate pendant arm. The MnL1 complex is fully formed at physiological pH 7.4, but it shows fast dissociation kinetics, as followed by relaxometry in the presence of an excess of Zn(II). The short dissociation half-life estimated for physiological pH ( 3 minutes) is related to fast spontaneous dissociation of the non-protonated complex. At lower pH values, the proton-assisted dissociation pathway becomes important, while the Zn(II) concentration has no effect on the dissociation rate. O NMR and H NMRD data indicated the presence of one inner-sphere water molecule with a rather slow exchange (298ex = 4.5 × 10 s) and provided information about other microscopic parameters governing relaxation. The relaxivity ( = 2.45 mM s at 20 MHz, 25 °C) corresponds to typical values for monohydrated Mn(II) chelates. Overall, the acetate pendant arm in L1 has a beneficial effect with respect to 15-pyNO in increasing the thermodynamic stability and kinetic inertness of its Mn(II) complex, but leads to a reduced number of inner-sphere water molecules and thus lower relaxivity.
一种新的 15 元吡啶基大环配体,其中包含一个醋酸盐侧臂(-羧甲基-3,12,18-三氮杂-6,9-二氧杂环十八烷-1(18),14,16-三烯,L1)被合成,并研究了其 Mn(II) 配合物 MnL1 在 MRI 造影剂开发方面的应用。MnL1 的 X 射线分子结构证实其配位数为七,具有轴向压缩的五重锥形几何形状,并且有一个配位位置可容纳一个内球水分子。通过电位法测定了 L1 的质子化常数和 Mn(II)、Zn(II)、Cu(II)和 Ca(II)配合物的稳定常数,结果表明其热力学稳定性高于没有醋酸盐侧臂的母体大环 15-pyNO 的配合物。MnL1 配合物在生理 pH 值 7.4 下完全形成,但在存在过量 Zn(II)的情况下通过弛豫率法观察到其快速解离动力学。在生理 pH 值下( 3 分钟)估计的短解离半衰期与非质子化配合物的快速自发解离有关。在较低的 pH 值下,质子辅助解离途径变得重要,而 Zn(II)浓度对解离速率没有影响。O NMR 和 H NMRD 数据表明存在一个内球水分子,其交换速度相当缓慢(298ex = 4.5 × 10 s),并提供了关于其他微观参数的信息,这些参数控制着弛豫。弛豫率(在 20 MHz、25°C 时为 2.45 mM s)对应于单水合 Mn(II)螯合物的典型值。总的来说,L1 中的醋酸盐侧臂对 15-pyNO 具有有益的影响,可提高其 Mn(II)配合物的热力学稳定性和动力学惰性,但导致内球水分子数量减少,从而降低弛豫率。