Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, United Kingdom.
PLoS One. 2023 May 23;18(5):e0285576. doi: 10.1371/journal.pone.0285576. eCollection 2023.
Messenger RNA uridylation is pervasive and conserved among eukaryotes, but the consequences of this modification for mRNA fate are still under debate. Utilising a simple model organism to study uridylation may facilitate efforts to understand the cellular function of this process. Here we demonstrate that uridylation can be detected using simple bioinformatics approach. We utilise it to unravel widespread transcript uridylation in fission yeast and demonstrate the contribution of both Cid1 and Cid16, the only two annotated terminal uridyltransferases (TUT-ases) in this yeast. To detect uridylation in transcriptome data, we used a RNA-sequencing (RNA-seq) library preparation protocol involving initial linker ligation to fragmented RNA-an approach borrowed from small RNA sequencing that was commonly used in older RNA-seq protocols. We next explored the data to detect uridylation marks. Our analysis show that uridylation in yeast is pervasive, similarly to the one in multicellular organisms. Importantly, our results confirm the role of the cytoplasmic uridyltransferase Cid1 as the primary uridylation catalyst. However, we also observed an auxiliary role of the second uridyltransferase, Cid16. Thus both fission yeast uridyltransferases are involved in mRNA uridylation. Intriguingly, we found no physiological phenotype of the single and double deletion mutants of cid1 and cid16 and only minimal impact of uridylation on steady-state mRNA levels. Our work establishes fission yeast as a potent model to study uridylation in a simple eukaryote, and we demonstrate that it is possible to detect uridylation marks in RNA-seq data without the need for specific methodologies.
信使 RNA 尿嘧啶核苷酰化作用在真核生物中普遍存在且保守,但这种修饰对 mRNA 命运的影响仍存在争议。利用简单的模式生物研究尿嘧啶核苷酰化作用可能有助于人们理解该过程的细胞功能。在这里,我们展示了可以使用简单的生物信息学方法检测尿嘧啶核苷酰化作用。我们利用它揭示了裂殖酵母中广泛存在的转录物尿嘧啶核苷酰化作用,并证明了唯一两种注释的末端尿嘧啶转移酶(TUT-ase)Cid1 和 Cid16 都对该酵母的这一过程有贡献。为了在转录组数据中检测尿嘧啶核苷酰化作用,我们使用了一种 RNA 测序(RNA-seq)文库制备方案,该方案涉及最初将 RNA 片段与接头连接的步骤——这种方法借鉴了小 RNA 测序,在较旧的 RNA-seq 方案中经常使用。我们接下来探索了数据以检测尿嘧啶核苷酰化标记。我们的分析表明,酵母中的尿嘧啶核苷酰化作用与多细胞生物中的尿嘧啶核苷酰化作用一样普遍。重要的是,我们的结果证实了细胞质尿嘧啶转移酶 Cid1 作为主要尿嘧啶核苷酰化催化剂的作用。然而,我们也观察到了第二种尿嘧啶转移酶 Cid16 的辅助作用。因此,裂殖酵母中的两种尿嘧啶转移酶都参与了 mRNA 的尿嘧啶核苷酰化作用。有趣的是,我们发现 cid1 和 cid16 的单突变体和双突变体没有表现出生理表型,并且尿嘧啶核苷酰化作用对稳态 mRNA 水平的影响很小。我们的工作确立了裂殖酵母作为研究简单真核生物中尿嘧啶核苷酰化作用的有力模型,并且我们证明了在不需要特定方法学的情况下,可以在 RNA-seq 数据中检测到尿嘧啶核苷酰化标记。