University College London, Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, London, United Kingdom.
The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom.
Elife. 2020 Jun 16;9:e55160. doi: 10.7554/eLife.55160.
Microbial fitness screens are a key technique in functional genomics. We present an all-in-one solution, , for automating and improving data analysis pipelines associated with large-scale fitness screens, including image acquisition and quantification, data normalisation, and statistical analysis. is versatile and processes fitness data from colony sizes, viability scores from phloxine B staining or colony growth curves, all obtained with inexpensive transilluminating flatbed scanners. We apply to show that the fitness information contained in late endpoint measurements of colony sizes is similar to maximum growth slopes from time series. We phenotype gene-deletion strains of fission yeast in 59,350 individual fitness assays in 70 conditions, revealing that colony size and viability provide complementary, independent information. Viability scores obtained from quantifying the redness of phloxine-stained colonies accurately reflect the fraction of live cells within colonies. is user-friendly, open-source and fully documented, illustrated by applications to diverse fitness analysis scenarios.
微生物适应力筛选是功能基因组学的一项关键技术。我们提出了一种一体化解决方案 ,用于自动化和改进与大规模适应力筛选相关的数据分析流程,包括图像采集和量化、数据归一化以及统计分析。 具有通用性,可以处理来自菌落大小、荧光素 B 染色的生存力评分或菌落生长曲线的适应力数据,所有这些数据都是使用廉价的透射平板扫描仪获得的。我们应用 来表明,从菌落大小的晚期终点测量中获取的适应力信息与时间序列的最大生长斜率相似。我们在 70 种条件下对裂殖酵母的基因缺失菌株进行了 59350 次个体适应力检测,结果表明,菌落大小和生存力提供了互补的、独立的信息。通过量化荧光素染色的菌落的红色程度获得的生存力评分准确反映了菌落中活细胞的比例。 易于使用、开源且有完整的文档记录,通过应用于各种适应力分析场景来说明。