文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

掺氧化铈和硫酸软骨素的聚氨酯支架桥接肌腱。

Cerium Oxide and Chondroitin Sulfate Doped Polyurethane Scaffold to Bridge Tendons.

机构信息

Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy.

Department of Medical Biotechnology and Translational Medicine, University of Milan, LITA Viale Fratelli Cervi 93, Segrate 20090, Italy.

出版信息

ACS Appl Mater Interfaces. 2023 Jun 7;15(22):26510-26524. doi: 10.1021/acsami.3c06144. Epub 2023 May 23.


DOI:10.1021/acsami.3c06144
PMID:37220144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10251353/
Abstract

Tendon disorders are common medical conditions, which can be greatly debilitating as they are often accompanied by great pain and inflammation. The techniques used nowadays for the treatment of chronic tendon injuries often involve surgery. However, one critical aspect of this procedure involves the scar tissue, characterized by mechanical properties that vary from healthy tissue, rendering the tendons inclined to reinjury or rupture. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with controlled elastic and mechanical properties, which could guarantee an effective support during the new tissue formation. The aim of this work was the design and the development of tubular nanofibrous scaffolds based on thermoplastic polyurethane and enriched with cerium oxide nanoparticles and chondroitin sulfate. The scaffolds were characterized by remarkable mechanical properties, especially when tubular aligned, reaching values comparable to the ones of the native tendons. A weight loss test was performed, suggesting a degradation in prolonged times. In particular, the scaffolds maintained their morphology and also remarkable mechanical properties after 12 weeks of degradation. The scaffolds promoted the cell adhesion and proliferation, in particular when in aligned conformation. Finally, the systems in vivo did not cause any inflammatory effect, representing interesting platforms for the regeneration of injured tendons.

摘要

肌腱疾病是常见的医学病症,常伴有剧烈疼痛和炎症,极大地削弱了患者的身体机能。目前治疗慢性肌腱损伤的技术通常涉及手术。然而,该手术程序的一个关键方面涉及到疤痕组织,其特征在于机械性能与健康组织不同,这使得肌腱容易再次受伤或破裂。热塑性聚氨酯等合成聚合物在组织工程领域特别受关注,因为它们可以生产出具有可控弹性和机械性能的支架,从而在新组织形成过程中提供有效的支撑。本工作旨在设计和开发基于热塑性聚氨酯的管状纳米纤维支架,并添加氧化铈纳米粒子和硫酸软骨素。支架具有显著的机械性能,尤其是在管状对齐时,达到了与天然肌腱相当的值。进行了重量损失测试,表明在延长时间内会发生降解。特别是,支架在降解 12 周后仍保持其形态和显著的机械性能。支架促进了细胞的黏附和增殖,尤其是在对齐的形态下。最后,体内系统没有引起任何炎症反应,为受伤肌腱的再生提供了有前途的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/9fcff86f4219/am3c06144_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/74df6b2dc779/am3c06144_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/95de29a6e0dc/am3c06144_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/f2723a32d1db/am3c06144_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/ea392b602886/am3c06144_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/97edbcada074/am3c06144_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/27c9d6a66f49/am3c06144_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/9fcff86f4219/am3c06144_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/74df6b2dc779/am3c06144_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/95de29a6e0dc/am3c06144_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/f2723a32d1db/am3c06144_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/ea392b602886/am3c06144_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/97edbcada074/am3c06144_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/27c9d6a66f49/am3c06144_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a3b/10251353/9fcff86f4219/am3c06144_0008.jpg

相似文献

[1]
Cerium Oxide and Chondroitin Sulfate Doped Polyurethane Scaffold to Bridge Tendons.

ACS Appl Mater Interfaces. 2023-6-7

[2]
Chondroitin sulfate and caseinophosphopeptides doped polyurethane-based highly porous 3D scaffolds for tendon-to-bone regeneration.

Int J Pharm. 2024-3-5

[3]
Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.

Acta Biomater. 2019-6-27

[4]
Electrospun Scaffolds Based on Poly(butyl cyanoacrylate) for Tendon Tissue Engineering.

Int J Mol Sci. 2023-2-6

[5]
An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells.

Acta Biomater. 2018-4-17

[6]
Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.

Acta Biomater. 2017-9-7

[7]
Collagen and chondroitin sulfate functionalized bioinspired fibers for tendon tissue engineering application.

Int J Biol Macromol. 2021-2-15

[8]
Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions.

J Microsc. 2020-3

[9]
Preparation of collagen/polyurethane/knitted silk as a composite scaffold for tendon tissue engineering.

Proc Inst Mech Eng H. 2017-7

[10]
Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering.

Tissue Eng Part C Methods. 2013-5-21

引用本文的文献

[1]
Magnetic scaffolds for the mechanotransduction stimulation in tendon tissue regeneration.

Mater Today Bio. 2025-3-26

[2]
Synthesis and use of thermoplastic polymers for tissue engineering purposes.

Int J Pharm X. 2024-12-17

[3]
Development of Cerium Oxide-Laden GelMA/PCL Scaffolds for Periodontal Tissue Engineering.

Materials (Basel). 2024-8-7

本文引用的文献

[1]
Evaluation of a Medical Grade Thermoplastic Polyurethane for the Manufacture of an Implantable Medical Device: The Impact of FDM 3D-Printing and Gamma Sterilization.

Pharmaceutics. 2023-1-30

[2]
Sequential Therapy for Bone Regeneration by Cerium Oxide-Reinforced 3D-Printed Bioactive Glass Scaffolds.

ACS Nano. 2023-3-14

[3]
Smart nano-in-microparticles to tackle bacterial infections in skin tissue engineering.

Mater Today Bio. 2022-9-7

[4]
Inorganic Nanomaterials in Tissue Engineering.

Pharmaceutics. 2022-5-26

[5]
Maltodextrin-amino acids electrospun scaffolds cross-linked with Maillard-type reaction for skin tissue engineering.

Biomater Adv. 2022-2

[6]
Biocompatible Synthetic Polymers for Tissue Engineering Purposes.

Biomacromolecules. 2022-5-9

[7]
Smart Device for Biologically Enhanced Functional Regeneration of Osteo-Tendon Interface.

Pharmaceutics. 2021-11-24

[8]
Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering.

Bioact Mater. 2021-6-5

[9]
Complications of Poly-l-Lactic Acid and Polyglycolic Acid (PLLA/PGA) Osteosynthesis Systems for Maxillofacial Surgery: A Retrospective Clinical Investigation.

Polymers (Basel). 2021-3-14

[10]
Enhanced Cells Anchoring to Electrospun Hybrid Scaffolds With PHBV and HA Particles for Bone Tissue Regeneration.

Front Bioeng Biotechnol. 2021-2-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索