文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于组织工程目的的热塑性聚合物的合成与应用。

Synthesis and use of thermoplastic polymers for tissue engineering purposes.

作者信息

Bianchi Eleonora, Ruggeri Marco, Vigani Barbara, Aguzzi Carola, Rossi Silvia, Sandri Giuseppina

机构信息

Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.

Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, Granada 18071, Spain.

出版信息

Int J Pharm X. 2024 Dec 17;9:100313. doi: 10.1016/j.ijpx.2024.100313. eCollection 2025 Jun.


DOI:10.1016/j.ijpx.2024.100313
PMID:39807177
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11729033/
Abstract

Thermoplastic polymers provide a versatile platform to mimic various aspects of physiological extracellular matrix properties such as chemical composition, stiffness, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of the most promising thermoplastic polymers, and in particular the thermoplastic polyesters, such as poly(lactic acid), poly(glycolic acid), and polycaprolactone, and the thermoplastic elastomers, such as polyurethanes, polyhydroxyalkanoates, and poly(butyl cyanoacrylate). A particular focus has been made on the synthesis processes, the processability and the biocompatibility. We also discuss how these materials can be applied in tissue engineering, mimicking tissues' structure and function, and stimulate mesenchymal stem cells differentiation and mechanotransduction.

摘要

热塑性聚合物提供了一个多功能平台,可用于模仿生理细胞外基质特性的各个方面,如化学成分、硬度和拓扑结构,以用于细胞和组织工程应用。在本综述中,我们简要概述了最有前景的热塑性聚合物,特别是热塑性聚酯,如聚乳酸、聚乙醇酸和聚己内酯,以及热塑性弹性体,如聚氨酯、聚羟基脂肪酸酯和聚氰基丙烯酸丁酯。特别关注了合成过程、加工性能和生物相容性。我们还讨论了这些材料如何应用于组织工程,模仿组织的结构和功能,并刺激间充质干细胞的分化和机械转导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/55b35e99196e/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/fe9522021185/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/03c0f8c01f93/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/337e3ba41a5f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/811d1efda73d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/353cae66abc2/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/26ff7fd9a337/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/8d0e41b023d9/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/88786c38da25/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/19472bc2b00e/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/d5edd53d78ab/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/55b35e99196e/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/fe9522021185/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/03c0f8c01f93/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/337e3ba41a5f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/811d1efda73d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/353cae66abc2/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/26ff7fd9a337/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/8d0e41b023d9/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/88786c38da25/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/19472bc2b00e/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/d5edd53d78ab/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f56/11729033/55b35e99196e/gr10.jpg

相似文献

[1]
Synthesis and use of thermoplastic polymers for tissue engineering purposes.

Int J Pharm X. 2024-12-17

[2]
Patterning methods for polymers in cell and tissue engineering.

Ann Biomed Eng. 2012-1-19

[3]
Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity.

Biomacromolecules. 2005

[4]
Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications.

Mater Sci Eng C Mater Biol Appl. 2018-10-5

[5]
Biodegradable Polymers in Veterinary Medicine-A Review.

Molecules. 2024-2-17

[6]
Use of Polyesters in Fused Deposition Modeling for Biomedical Applications.

Macromol Biosci. 2022-10

[7]
Poly(caprolactone-co-oxo-crown ether)-based poly(urethane)urea for soft tissue engineering applications.

Biomacromolecules. 2007-9

[8]
Fibrous Scaffolds for Muscle Tissue Engineering Based on Touch-Spun Poly(Ester-Urethane) Elastomer.

Macromol Biosci. 2022-4

[9]
Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.

Acta Biomater. 2006-7

[10]
Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone.

Biomaterials. 2004-5

引用本文的文献

[1]
Evaluation of Polypropylene Reusability Using a Simple Mechanical Model Derived from Injection-Molded Products.

Polymers (Basel). 2025-7-31

[2]
Magnetic scaffolds for the mechanotransduction stimulation in tendon tissue regeneration.

Mater Today Bio. 2025-3-26

本文引用的文献

[1]
Modified Poly(ε-caprolactone) with Tunable Degradability and Improved Biofunctionality for Regenerative Medicine.

ACS Mater Au. 2023-7-10

[2]
The hippo kinases MST1/2 in cardiovascular and metabolic diseases: A promising therapeutic target option for pharmacotherapy.

Acta Pharm Sin B. 2023-5

[3]
Cerium Oxide and Chondroitin Sulfate Doped Polyurethane Scaffold to Bridge Tendons.

ACS Appl Mater Interfaces. 2023-6-7

[4]
Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy.

Adv Sci (Weinh). 2023-7

[5]
A 3D printed polylactic acid-Baghdadite nanocomposite scaffold coated with microporous chitosan-VEGF for bone regeneration applications.

Carbohydr Polym. 2023-7-15

[6]
Electrospun Scaffolds Based on Poly(butyl cyanoacrylate) for Tendon Tissue Engineering.

Int J Mol Sci. 2023-2-6

[7]
Polycaprolactone (PCL)-Polylactic Acid (PLA)-Glycerol (Gly) Composites Incorporated with Zinc Oxide Nanoparticles (ZnO-NPs) and Tea Tree Essential Oil (TTEO) for Tissue Engineering Applications.

Pharmaceutics. 2022-12-22

[8]
Tissue-engineered vascular graft based on a bioresorbable tubular knit scaffold with flexibility, durability, and suturability for implantation.

J Mater Chem B. 2023-2-1

[9]
Topographical and Compositional Gradient Tubular Scaffold for Bone to Tendon Interface Regeneration.

Pharmaceutics. 2022-10-10

[10]
Sugar-Triggered Burst Drug Releasing Poly-Lactic Acid (PLA) Microneedles and Its Fabrication Based on Solvent-Casting Approach.

Pharmaceutics. 2022-8-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索