文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 SEER 数据库的盲肠癌患者特异性死亡率预测列线图:一项研究。

A nomogram for predicting cause-specific mortality among patients with cecal carcinoma: a study based on SEER database.

机构信息

The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.

Wuhan Central Hospital, No. 26, Shengli Street, Jiang'an District, Wuhan, China.

出版信息

BMC Gastroenterol. 2023 May 23;23(1):177. doi: 10.1186/s12876-023-02802-7.


DOI:10.1186/s12876-023-02802-7
PMID:37221487
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10207820/
Abstract

OBJECTIVE: Classical Cox proportional hazard models tend to overestimate the event probability in a competing risk setup. Due to the lack of quantitative evaluation of competitive risk data for colon cancer (CC), the present study aims to evaluate the probability of CC-specific death and construct a nomogram to quantify survival differences among CC patients. METHODS: Data on patients diagnosed with CC between 2010 and 2015 were collected from the Surveillance, Epidemiology, and End Results Program (SEER) database. Patients were divided into a training dataset for the establishment of the model and a validation dataset to evaluate the performance the model at a ratio of 7:3. To evaluate the ability of multiple variables to predict cause-specific death in CC patients, univariate and multivariate analyses with Fine-Gray models were performed to screen the predictors of cause-specific death, and a nomogram for predicting cause-specific mortality was constructed. Then, the receiver operating characteristic (ROC) curve and the calibration curve were plotted to evaluate the prognostic performance of the nomogram. RESULTS: The dataset was randomly divided into a training (n = 16,655) dataset and a validation (n = 7,139) dataset at a ratio of 7:3. In the training dataset, variables including pathological subtypes of tumors, pathological grading (degree of differentiation), AJCC staging, T-staging, surgical type, lymph node surgery, chemotherapy, tumor deposits, lymph node metastasis, liver metastasis, and lung metastasis were identified as independent risk factors for cause-specific death of CC patients. Among these factors, the AJCC stage had the strongest predictive ability, and these features were used to construct the final model. In the training dataset, the consistency index (C-index) of the model was 0.848, and the areas under the receiver operating characteristic curve (AUC) at 1, 3, and 5 years was 0.852, 0.861, and 0.856, respectively. In the validation dataset, the C-index of the model was 0.847, and the AUC at 1 year, 3 years, and 5 years was 0.841, 0.862, and 0.852, respectively, indicating that this nomogram had an excellent and robust predictive performance. CONCLUSION: This study can help clinical doctors make better clinical decisions and provide better support for patients with CC.

摘要

目的:经典 Cox 比例风险模型在竞争风险设置中往往会高估事件概率。由于缺乏结肠癌(CC)竞争风险数据的定量评估,本研究旨在评估 CC 特异性死亡的概率,并构建一个列线图来量化 CC 患者的生存差异。

方法:从监测、流行病学和最终结果(SEER)数据库中收集了 2010 年至 2015 年期间诊断为 CC 的患者的数据。患者被分为训练数据集和验证数据集,比例为 7:3,用于建立模型和评估模型性能。为了评估多个变量预测 CC 患者特定原因死亡的能力,采用 Fine-Gray 模型进行单变量和多变量分析,筛选特定原因死亡的预测因子,并构建预测特定原因死亡率的列线图。然后,绘制接受者操作特征(ROC)曲线和校准曲线,以评估列线图的预后性能。

结果:数据集被随机分为训练集(n=16655)和验证集(n=7139),比例为 7:3。在训练集中,肿瘤的病理亚型、病理分级(分化程度)、AJCC 分期、T 分期、手术类型、淋巴结手术、化疗、肿瘤沉积、淋巴结转移、肝转移和肺转移等变量被确定为 CC 患者特定原因死亡的独立危险因素。在这些因素中,AJCC 分期具有最强的预测能力,并且这些特征被用于构建最终模型。在训练集中,该模型的一致性指数(C 指数)为 0.848,1、3 和 5 年的接收器操作特征曲线(AUC)面积分别为 0.852、0.861 和 0.856。在验证集中,模型的 C 指数为 0.847,1、3 和 5 年的 AUC 分别为 0.841、0.862 和 0.852,表明该列线图具有出色且稳健的预测性能。

结论:本研究有助于临床医生做出更好的临床决策,并为 CC 患者提供更好的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/6d4d84ba0c6f/12876_2023_2802_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/8bd6a0d11330/12876_2023_2802_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/6a8602ba4fbe/12876_2023_2802_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/6d9a5fb2adbf/12876_2023_2802_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/78a98135b8b5/12876_2023_2802_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/6d4d84ba0c6f/12876_2023_2802_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/8bd6a0d11330/12876_2023_2802_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/6a8602ba4fbe/12876_2023_2802_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/6d9a5fb2adbf/12876_2023_2802_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/78a98135b8b5/12876_2023_2802_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cb2/10207820/6d4d84ba0c6f/12876_2023_2802_Fig5_HTML.jpg

相似文献

[1]
A nomogram for predicting cause-specific mortality among patients with cecal carcinoma: a study based on SEER database.

BMC Gastroenterol. 2023-5-23

[2]
Development and validation of a nomogram model for cancer-specific survival of patients with poorly differentiated thyroid carcinoma: A SEER database analysis.

Front Endocrinol (Lausanne). 2022

[3]
Prediction of death probability in adenocarcinoma of the transverse colon: competing-risk nomograms based on 21,469 patients.

J Cancer Res Clin Oncol. 2023-9

[4]
A prognostic nomogram for the cancer-specific survival of patients with upper-tract urothelial carcinoma based on the Surveillance, Epidemiology, and End Results Database.

BMC Cancer. 2020-6-8

[5]
Bladder cancer survival nomogram: Development and validation of a prediction tool, using the SEER and TCGA databases.

Medicine (Baltimore). 2019-11

[6]
Development and validation of a Surveillance, Epidemiology, and End Results (SEER)-based prognostic nomogram for predicting survival in gastric cancer with multi-organ metastases.

Transl Cancer Res. 2022-6

[7]
The nomograms for predicting overall and cancer-specific survival in elderly patients with early-stage lung cancer: A population-based study using SEER database.

Front Public Health. 2022

[8]
Nomogram predicting overall survival of rectal squamous cell carcinomas patients based on the SEER database: A population-based STROBE cohort study.

Medicine (Baltimore). 2019-11

[9]
A Nomogram Predicting the Overall Survival and Cancer-Specific Survival in Patients with Parathyroid Cancer: A Retrospective Study.

Front Endocrinol (Lausanne). 2022

[10]
Development and external validation of a novel nomogram for predicting cancer-specific survival in patients with ascending colon adenocarcinoma after surgery: a population-based study.

World J Surg Oncol. 2022-4-19

本文引用的文献

[1]
Competitive Risk Analysis of Prognosis in Patients With Cecum Cancer: A Population-Based Study.

Cancer Control. 2021

[2]
Suicide among cancer patients.

Nat Commun. 2019-1-14

[3]
Differences between carcinoma of the cecum and ascending colon: Evidence based on clinical and embryological data.

Int J Oncol. 2018-4-12

[4]
Prognostic significance of adjuvant radiation therapy in adenocarcinoma of the cecum.

Radiat Oncol J. 2018-3

[5]
Survival rates and predictors of survival among colorectal cancer patients in a Malaysian tertiary hospital.

BMC Cancer. 2017-5-18

[6]
Annual Report to the Nation on the Status of Cancer, 1975-2014, Featuring Survival.

J Natl Cancer Inst. 2017-9-1

[7]
Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study.

JAMA Oncol. 2017-4-1

[8]
Causes of death among cancer patients.

Ann Oncol. 2017-2-1

[9]
Prognostic Survival Associated With Left-Sided vs Right-Sided Colon Cancer: A Systematic Review and Meta-analysis.

JAMA Oncol. 2017-2-1

[10]
Survival Analysis and Prognostic Factors for Colorectal Cancer Patients in Malaysia.

Asian Pac J Cancer Prev. 2016

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索