Overcast Isaac, Noguerales Víctor, Meramveliotakis Emmanouil, Andújar Carmelo, Arribas Paula, Creedy Thomas J, Emerson Brent C, Vogler Alfried P, Papadopoulou Anna, Morlon Hélène
Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
Department of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA.
Mol Ecol. 2023 Dec;32(23):6093-6109. doi: 10.1111/mec.16958. Epub 2023 May 23.
Understanding the relative contributions of ecological and evolutionary processes to the structuring of ecological communities is needed to improve our ability to predict how communities may respond to future changes in an increasingly human-modified world. Metabarcoding methods make it possible to gather population genetic data for all species within a community, unlocking a new axis of data to potentially unveil the origins and maintenance of biodiversity at local scales. Here, we present a new eco-evolutionary simulation model for investigating community assembly dynamics using metabarcoding data. The model makes joint predictions of species abundance, genetic variation, trait distributions and phylogenetic relationships under a wide range of parameter settings (e.g. high speciation/low dispersal or vice versa) and across a range of community states, from pristine and unmodified to heavily disturbed. We first demonstrate that parameters governing metacommunity and local community processes leave detectable signatures in simulated biodiversity data axes. Next, using a simulation-based machine learning approach we show that neutral and non-neutral models are distinguishable and that reasonable estimates of several model parameters within the local community can be obtained using only community-scale genetic data, while phylogenetic information is required to estimate those describing metacommunity dynamics. Finally, we apply the model to soil microarthropod metabarcoding data from the Troodos mountains of Cyprus, where we find that communities in widespread forest habitats are structured by neutral processes, while high-elevation and isolated habitats act as an abiotic filter generating non-neutral community structure. We implement our model within the ibiogen R package, a package dedicated to the investigation of island, and more generally community-scale, biodiversity using community-scale genetic data.
为了提高我们预测群落如何应对日益受到人类影响的世界中未来变化的能力,需要了解生态和进化过程对生态群落结构的相对贡献。代谢条形码方法使收集群落中所有物种的种群遗传数据成为可能,从而开启了一个新的数据维度,有可能揭示局部尺度上生物多样性的起源和维持机制。在此,我们提出了一种新的生态进化模拟模型,用于利用代谢条形码数据研究群落组装动态。该模型在广泛的参数设置下(例如高物种形成率/低扩散率或反之亦然)以及从原始未改变到严重干扰的一系列群落状态下,对物种丰度、遗传变异、性状分布和系统发育关系进行联合预测。我们首先证明,控制集合群落和局部群落过程的参数在模拟的生物多样性数据维度中留下了可检测的特征。接下来,我们使用基于模拟的机器学习方法表明,中性和非中性模型是可区分的,并且仅使用群落尺度的遗传数据就可以获得局部群落中几个模型参数的合理估计值,而估计描述集合群落动态的参数则需要系统发育信息。最后,我们将该模型应用于塞浦路斯特罗多斯山脉的土壤微型节肢动物代谢条形码数据,发现广泛分布的森林栖息地中的群落由中性过程构建,而高海拔和孤立的栖息地则作为一种非生物过滤器产生非中性的群落结构。我们在ibiogen R包中实现了我们的模型,该包致力于使用群落尺度的遗传数据研究岛屿以及更一般的群落尺度的生物多样性。