Suppr超能文献

一个统一的物种丰富度、遗传多样性和功能多样性模型揭示了结构生态群落的机制。

A unified model of species abundance, genetic diversity, and functional diversity reveals the mechanisms structuring ecological communities.

机构信息

Biology Department, Graduate Center of the City University of New York, New York, New York, USA.

Biology Department, City College of New York, New York, New York, USA.

出版信息

Mol Ecol Resour. 2021 Nov;21(8):2782-2800. doi: 10.1111/1755-0998.13514. Epub 2021 Oct 23.

Abstract

Biodiversity accumulates hierarchically by means of ecological and evolutionary processes and feedbacks. Within ecological communities drift, dispersal, speciation, and selection operate simultaneously to shape patterns of biodiversity. Reconciling the relative importance of these is hindered by current models and inference methods, which tend to focus on a subset of processes and their resulting predictions. Here we introduce massive ecoevolutionary synthesis simulations (MESS), a unified mechanistic model of community assembly, rooted in classic island biogeography theory, which makes temporally explicit joint predictions across three biodiversity data axes: (i) species richness and abundances, (ii) population genetic diversities, and (iii) trait variation in a phylogenetic context. Using simulations we demonstrate that each data axis captures information at different timescales, and that integrating these axes enables discriminating among previously unidentifiable community assembly models. MESS is unique in generating predictions of community-scale genetic diversity, and in characterizing joint patterns of genetic diversity, abundance, and trait values. MESS unlocks the full potential for investigation of biodiversity processes using multidimensional community data including a genetic component, such as might be produced by contemporary eDNA or metabarcoding studies. We combine MESS with supervised machine learning to fit the parameters of the model to real data and infer processes underlying how biodiversity accumulates, using communities of tropical trees, arthropods, and gastropods as case studies that span a range of data availability scenarios, and spatial and taxonomic scales.

摘要

生物多样性通过生态和进化过程以及反馈而呈层级式积累。在生态群落中,漂变、扩散、物种形成和选择同时作用,塑造了生物多样性的模式。由于当前的模型和推理方法往往侧重于过程的子集及其产生的预测,因此协调这些过程的相对重要性受到了阻碍。在这里,我们引入了大规模生态进化综合模拟(MESS),这是一种基于经典岛屿生物地理学理论的群落组装统一机制模型,它在三个生物多样性数据轴上进行了时间明确的联合预测:(i)物种丰富度和丰度,(ii)种群遗传多样性,以及(iii)系统发育背景下的特征变异。通过模拟,我们证明了每个数据轴在不同的时间尺度上捕获信息,并且整合这些轴可以区分以前无法识别的群落组装模型。MESS 的独特之处在于生成社区规模遗传多样性的预测,并描述遗传多样性、丰度和特征值的联合模式。MESS 利用多维群落数据(包括遗传成分)解锁了对生物多样性过程进行调查的全部潜力,这些数据可能是由当代的 eDNA 或代谢组学研究产生的。我们将 MESS 与监督机器学习相结合,根据真实数据拟合模型的参数,并推断生物多样性积累的潜在过程,使用热带树木、节肢动物和腹足动物的群落作为案例研究,涵盖了一系列数据可用性情景以及空间和分类尺度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acc2/9297962/d3175760d60c/MEN-21-2782-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验