Opt Lett. 2023 Apr 1;48(7):1566-1569. doi: 10.1364/OL.483886.
Deep-learning-augmented single-pixel imaging (SPI) provides an efficient solution for target compressive sensing. However, the conventional supervised strategy suffers from laborious training and poor generalization. In this Letter, we report a self-supervised learning method for SPI reconstruction. It introduces dual-domain constraints to integrate the SPI physics model into a neural network. Specifically, in addition to the traditional measurement constraint, an extra transformation constraint is employed to ensure target plane consistency. The transformation constraint uses the invariance of reversible transformation to impose an implicit prior, which avoids the non-uniqueness of measurement constraint. A series of experiments validate that the reported technique realizes self-supervised reconstruction in various complex scenes without any paired data, ground truth, or pre-trained prior. It can tackle the underdetermined degradation and noise, with ∼3.7-dB improvement on the PSNR index compared with the existing method.
深度学习增强的单像素成像 (SPI) 为目标压缩感知提供了一种有效的解决方案。然而,传统的监督策略存在训练繁琐和泛化能力差的问题。在这篇文章中,我们报告了一种用于 SPI 重建的自监督学习方法。它将 SPI 物理模型引入到神经网络中,引入了双域约束。具体来说,除了传统的测量约束外,还采用了额外的变换约束来确保目标平面的一致性。变换约束利用可逆变换的不变性施加了一个隐式先验,避免了测量约束的非唯一性。一系列实验验证了所提出的技术可以在没有任何配对数据、真实值或预训练先验的情况下,在各种复杂场景中实现自监督重建。它可以解决欠定退化和噪声问题,与现有方法相比,PSNR 指标提高了约 3.7dB。