Suppr超能文献

基于自监督条件无掩码分类器引导的单像素成像。

Single-pixel imaging based on self-supervised conditional mask classifier-free guidance.

作者信息

Li Qianxi, Yan Qiurong, Dong Jiawei, Feng Jia, Wu Jiaxin, Cao Jianzhong, Liu Guangsen, Wang Hao

出版信息

Opt Express. 2024 May 20;32(11):18771-18789. doi: 10.1364/OE.518455.

Abstract

Reconstructing high-quality images at a low measurement rate is a pivotal objective of Single-Pixel Imaging (SPI). Currently, deep learning methods achieve this by optimizing the loss between the target image and the original image, thereby constraining the potential of low measurement values. We employ conditional probability to ameliorate this, introducing the classifier-free guidance model (CFG) for enhanced reconstruction. We propose a self-supervised conditional masked classifier-free guidance (SCM-CFG) for single-pixel reconstruction. At a 10% measurement rate, SCM-CFG efficiently completed the training task, achieving an average peak signal-to-noise ratio (PSNR) of 26.17 dB on the MNIST dataset. This surpasses other methods of photon imaging and computational ghost imaging. It demonstrates remarkable generalization performance. Moreover, thanks to the outstanding design of the conditional mask in this paper, it can significantly enhance the accuracy of reconstructed images through overlay. SCM-CFG achieved a notable improvement of an average of 7.3 dB in overlay processing, in contrast to only a 1 dB improvement in computational ghost imaging. Subsequent physical experiments validated the effectiveness of SCM-CFG.

摘要

以低测量率重建高质量图像是单像素成像(SPI)的一个关键目标。目前,深度学习方法通过优化目标图像与原始图像之间的损失来实现这一目标,从而限制了低测量值的潜力。我们采用条件概率来改善这一情况,引入了无分类器引导模型(CFG)以增强重建效果。我们提出了一种用于单像素重建的自监督条件掩码无分类器引导(SCM-CFG)方法。在10%的测量率下,SCM-CFG有效地完成了训练任务,在MNIST数据集上实现了平均峰值信噪比(PSNR)为26.17 dB。这超过了其他光子成像和计算鬼成像方法。它展示了卓越的泛化性能。此外,由于本文中条件掩码的出色设计,它可以通过叠加显著提高重建图像的精度。与计算鬼成像仅1 dB的改善相比,SCM-CFG在叠加处理中平均实现了7.3 dB的显著提升。后续的物理实验验证了SCM-CFG的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验