Suppr超能文献

整合统计与机器学习方法进行神经分类

Integrating Statistical and Machine Learning Approaches for Neural Classification.

作者信息

Sarmashghi Mehrad, Jadhav Shantanu P, Eden Uri T

机构信息

Division of Systems Engineering, Boston University, Boston, MA 02215, USA.

Department of Psychology, Brandeis University, Waltham, MA 02453, USA.

出版信息

IEEE Access. 2022;10:119106-119118. doi: 10.1109/access.2022.3221436. Epub 2022 Nov 10.

Abstract

Neurons can code for multiple variables simultaneously and neuroscientists are often interested in classifying neurons based on their receptive field properties. Statistical models provide powerful tools for determining the factors influencing neural spiking activity and classifying individual neurons. However, as neural recording technologies have advanced to produce simultaneous spiking data from massive populations, classical statistical methods often lack the computational efficiency required to handle such data. Machine learning (ML) approaches are known for enabling efficient large scale data analyses; however, they typically require massive training sets with balanced data, along with accurate labels to fit well. Additionally, model assessment and interpretation are often more challenging for ML than for classical statistical methods. To address these challenges, we develop an integrated framework, combining statistical modeling and machine learning approaches to identify the coding properties of neurons from large populations. In order to demonstrate this framework, we apply these methods to data from a population of neurons recorded from rat hippocampus to characterize the distribution of spatial receptive fields in this region.

摘要

神经元能够同时对多个变量进行编码,神经科学家通常对基于神经元的感受野特性对其进行分类感兴趣。统计模型为确定影响神经放电活动的因素和对单个神经元进行分类提供了强大的工具。然而,随着神经记录技术的进步,能够从大量神经元群体中产生同时的放电数据,经典统计方法往往缺乏处理此类数据所需的计算效率。机器学习(ML)方法以能够进行高效的大规模数据分析而闻名;然而,它们通常需要具有平衡数据的大量训练集以及准确的标签才能很好地拟合。此外,与经典统计方法相比,机器学习的模型评估和解释通常更具挑战性。为了应对这些挑战,我们开发了一个综合框架,将统计建模和机器学习方法相结合,以识别来自大量神经元群体的编码特性。为了展示这个框架,我们将这些方法应用于从大鼠海马体记录的神经元群体数据,以表征该区域空间感受野的分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cd1/10205093/461e5cd1fef4/nihms-1850957-f0004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验