Rezaei Mohammad R, Gillespie Anna K, Guidera Jennifer A, Nazari Behzad, Sadri Saeid, Frank Loren M, Eden Uri T, Yousefi Ali
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4732-4735. doi: 10.1109/EMBC.2018.8513154.
The emergence of deep learning techniques has provided new tools for the analysis of complex data in the field of neuroscience. In parallel, advanced statistical approaches like point-process modeling provide powerful tools for analyzing the spiking activity of neural populations. How statistical and machine learning techniques compare when applied to neural data remains largely unclear. In this research, we compare the performance of a point-process filter and a long short-term memory (LSTM) network in decoding the 2D movement trajectory of a rat using the neural activity recorded from an ensemble of hippocampal place cells. We compute the least absolute error (LAE), a measure of accuracy of prediction, and the coefficient of determination (R2), a measure of prediction consistency, to compare the performance of these two methods. We show that the LSTM and point-process filter provide comparable accuracy in predicting the position; however, the point-process provides further information about the prediction which is unavailable for LSTM. Though previous results report better performance using deep learning techniques, our results indicate that this is not universally the case. We also investigate how these techniques encode information carried by place cell activity and compare the computational efficiency of the two methods. While the point-process model is built using the receptive field for each place cell, we show that LSTM does not necessarily encode receptive fields, but instead decodes the movement trajectory using other features of neural activity. Although it is less robust, LSTM runs more than 7 times faster than the fastest point-process filter in this research, providing a strong advantage in computational efficiency. Together, these results suggest that the point-process filters and LSTM approaches each provide distinct advantages; the choice of model should be informed by the specific scientific question of interest.
深度学习技术的出现为神经科学领域复杂数据的分析提供了新工具。与此同时,诸如点过程建模等先进的统计方法为分析神经群体的尖峰活动提供了强大工具。当应用于神经数据时,统计技术和机器学习技术的比较在很大程度上仍不明确。在本研究中,我们比较了点过程滤波器和长短期记忆(LSTM)网络在使用从海马体位置细胞集合记录的神经活动解码大鼠二维运动轨迹方面的性能。我们计算了预测准确性的一种度量——最小绝对误差(LAE),以及预测一致性的一种度量——决定系数(R²),以比较这两种方法的性能。我们表明,LSTM和点过程滤波器在预测位置方面提供了相当的准确性;然而,点过程提供了关于预测的进一步信息,而LSTM无法获得这些信息。尽管先前的结果报告使用深度学习技术有更好的性能,但我们的结果表明情况并非总是如此。我们还研究了这些技术如何编码位置细胞活动携带的信息,并比较了这两种方法的计算效率。虽然点过程模型是使用每个位置细胞的感受野构建的,但我们表明LSTM不一定编码感受野,而是使用神经活动的其他特征解码运动轨迹。尽管LSTM的鲁棒性较差,但在本研究中它的运行速度比最快的点过程滤波器快7倍以上,在计算效率方面具有显著优势。总之,这些结果表明点过程滤波器和LSTM方法各有独特优势;模型的选择应根据感兴趣的具体科学问题来确定。