Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland.
Maj Institute of Pharmacology, Polish Academy of Sciences, Smȩtna 12, 31-343 Kraków, Poland.
J Chem Inf Model. 2023 Jun 12;63(11):3238-3247. doi: 10.1021/acs.jcim.2c01355. Epub 2023 May 24.
Designing compounds with desired properties is a key element of the drug discovery process. However, measuring progress in the field has been challenging due to the lack of realistic retrospective benchmarks, and the large cost of prospective validation. To close this gap, we propose a benchmark based on docking, a widely used computational method for assessing molecule binding to a protein. Concretely, the goal is to generate drug-like molecules that are scored highly by SMINA, a popular docking software. We observe that various graph-based generative models fail to propose molecules with a high docking score when trained using a realistically sized training set. This suggests a limitation of the current incarnation of models for drug design. Finally, we also include simpler tasks in the benchmark based on a simpler scoring function. We release the benchmark as an easy to use package available at https://github.com/cieplinski-tobiasz/smina-docking-benchmark. We hope that our benchmark will serve as a stepping stone toward the goal of automatically generating promising drug candidates.
设计具有理想性质的化合物是药物发现过程的关键要素。然而,由于缺乏现实的回溯基准和前瞻性验证的高成本,衡量该领域的进展一直具有挑战性。为了弥补这一差距,我们提出了一个基于对接的基准,对接是一种广泛用于评估分子与蛋白质结合的计算方法。具体来说,目标是生成被广泛使用的对接软件 SMINA 评分较高的类药物分子。我们观察到,当使用真实大小的训练集进行训练时,各种基于图的生成模型无法提出具有高对接评分的分子。这表明目前的药物设计模型存在局限性。最后,我们还在基准中包含了更简单的任务,基于更简单的评分函数。我们将基准作为一个易于使用的软件包发布在 https://github.com/cieplinski-tobiasz/smina-docking-benchmark 上。我们希望我们的基准将成为自动生成有前途的药物候选物的目标的垫脚石。