Suppr超能文献

利用CVAE生成模型提升针对多个治疗靶点的药物设计

Enhancing Drug Design across Multiple Therapeutic Targets with CVAE Generative Models.

作者信息

Romanelli Virgilio, Annunziata Daniela, Cerchia Carmen, Cerciello Donato, Piccialli Francesco, Lavecchia Antonio

机构信息

Department of Pharmacy, "Drug Discovery Laboratory", University of Naples Federico II, Naples 80131, Italy.

Department of Mathematics and Applications "R. Caccioppoli", University of Naples Federico II, Naples 80126, Italy.

出版信息

ACS Omega. 2024 Oct 18;9(43):43963-43976. doi: 10.1021/acsomega.4c08027. eCollection 2024 Oct 29.

Abstract

Drug discovery is a costly and time-consuming process, necessitating innovative strategies to enhance efficiency across different stages, from initial hit identification to final market approval. Recent advancement in deep learning (DL), particularly in drug design, show promise. Generative models, a subclass of DL algorithms, have significantly accelerated the drug design process by exploring vast areas of chemical space. Here, we introduce a Conditional Variational Autoencoder (CVAE) generative model tailored for molecular design tasks, utilizing both SMILES and SELFIES as molecular representations. Our computational framework successfully generates molecules with specific property profiles validated though metrics such as uniqueness, validity, novelty, quantitative estimate of drug-likeness (QED), and synthetic accessibility (SA). We evaluated our model's efficacy in generating novel molecules capable of binding to three therapeutic molecular targets: CDK2, PPARγ, and DPP-IV. Comparing with state-of-the-art frameworks demonstrated our model's ability to achieve higher structural diversity while maintaining the molecular properties ranges observed in the training set molecules. This proposed model stands as a valuable resource for advancing molecular design capabilities.

摘要

药物发现是一个成本高昂且耗时的过程,因此需要创新策略来提高从最初的活性化合物识别到最终市场批准的不同阶段的效率。深度学习(DL)的最新进展,特别是在药物设计方面,显示出了前景。生成模型作为DL算法的一个子类,通过探索广阔的化学空间显著加速了药物设计过程。在这里,我们介绍一种为分子设计任务量身定制的条件变分自编码器(CVAE)生成模型,它利用SMILES和SELFIES作为分子表示。我们的计算框架成功生成了具有特定性质特征的分子,并通过唯一性、有效性、新颖性、类药性质定量估计(QED)和合成可及性(SA)等指标进行了验证。我们评估了我们的模型在生成能够与三种治疗性分子靶点(CDK2、PPARγ和DPP-IV)结合的新型分子方面的功效。与最先进的框架相比,证明了我们的模型在保持训练集分子中观察到的分子性质范围的同时,能够实现更高的结构多样性。这个提出的模型是推进分子设计能力的宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/161e/11525747/da1821d7023e/ao4c08027_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验