Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong.
Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500 Bron, France; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.
Cell Rep. 2023 Jun 27;42(6):112555. doi: 10.1016/j.celrep.2023.112555. Epub 2023 May 23.
Important decisions often involve choosing between complex environments that define future item encounters. Despite its importance for adaptive behavior and distinct computational challenges, decision-making research primarily focuses on item choice, ignoring environment choice altogether. Here we contrast previously studied item choice in ventromedial prefrontal cortex with lateral frontopolar cortex (FPl) linked to environment choice. Furthermore, we propose a mechanism for how FPl decomposes and represents complex environments during decision making. Specifically, we trained a choice-optimized, brain-naive convolutional neural network (CNN) and compared predicted CNN activation with actual FPl activity. We showed that the high-dimensional FPl activity decomposes environment features to represent the complexity of an environment to make such choice possible. Moreover, FPl functionally connects with posterior cingulate cortex for guiding environment choice. Further probing FPl's computation revealed a parallel processing mechanism in extracting multiple environment features.
重要决策通常涉及在定义未来项目遭遇的复杂环境之间进行选择。尽管决策制定对于适应行为和独特的计算挑战非常重要,但决策研究主要侧重于项目选择,完全忽略了环境选择。在这里,我们将之前在腹内侧前额叶皮层中研究过的项目选择与与环境选择相关的外侧额极皮层(FPl)进行对比。此外,我们提出了一种 FPl 在决策过程中分解和表示复杂环境的机制。具体来说,我们训练了一个经过选择优化的、大脑原始的卷积神经网络(CNN),并将预测的 CNN 激活与实际的 FPl 活动进行了比较。我们表明,高维 FPl 活动分解环境特征,以表示环境的复杂性,从而使这种选择成为可能。此外,FPl 与后扣带回皮层功能连接,以指导环境选择。进一步探测 FPl 的计算揭示了一种在提取多个环境特征时的并行处理机制。