Suppr超能文献

在使用修正功效先验的具有纵向结局的临床试验中纳入历史对照。

Incorporating historical controls in clinical trials with longitudinal outcomes using the modified power prior.

机构信息

Department of Biostatistics, Erasmus University Medical Center, Rotterdam, The Netherlands.

Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.

出版信息

Pharm Stat. 2022 Sep;21(5):818-834. doi: 10.1002/pst.2195. Epub 2022 Feb 6.

Abstract

Several dynamic borrowing methods, such as the modified power prior (MPP), the commensurate prior, have been proposed to increase statistical power and reduce the required sample size in clinical trials where comparable historical controls are available. Most methods have focused on cross-sectional endpoints, and appropriate methodology for longitudinal outcomes is lacking. In this study, we extend the MPP to the linear mixed model (LMM). An important question is whether the MPP should use the conditional version of the LMM (given the random effects) or the marginal version (averaged over the distribution of the random effects), which we refer to as the conditional MPP and the marginal MPP, respectively. We evaluated the MPP for one historical control arm via a simulation study and an analysis of the data of Alzheimer's Disease Cooperative Study (ADCS) with the commensurate prior as the comparator. The conditional MPP led to inflated type I error rate when there existed moderate or high between-study heterogeneity. The marginal MPP and the commensurate prior yielded a power gain (3.6%-10.4% vs. 0.6%-4.6%) with the type I error rates close to 5% (5.2%-6.2% vs. 3.8%-6.2%) when the between-study heterogeneity is not excessively high. For the ADCS data, all the borrowing methods improved the precision of estimates and provided the same clinical conclusions. The marginal MPP and the commensurate prior are useful for borrowing historical controls in longitudinal data analysis, while the conditional MPP is not recommended due to inflated type I error rates.

摘要

已经提出了几种动态借用方法,例如修正的幂先验(MPP)和相称先验,以在有可比历史对照的临床试验中增加统计效力并减少所需的样本量。大多数方法都集中在横断面终点上,缺乏适合纵向结局的适当方法。在这项研究中,我们将 MPP 扩展到线性混合模型(LMM)。一个重要的问题是,MPP 是应该使用 LMM 的条件版本(考虑到随机效应)还是边际版本(在随机效应的分布上平均),我们分别将其称为条件 MPP 和边际 MPP。我们通过模拟研究和对阿尔茨海默病合作研究(ADCS)数据的分析,用相称先验作为比较方法,评估了一个历史对照臂的 MPP。当存在中度或高度研究间异质性时,条件 MPP 会导致 I 型错误率膨胀。当研究间异质性不太高时,边际 MPP 和相称先验可以获得功率增益(3.6%-10.4%比 0.6%-4.6%),I 型错误率接近 5%(5.2%-6.2%比 3.8%-6.2%)。对于 ADCS 数据,所有借用方法都提高了估计的精度,并提供了相同的临床结论。边际 MPP 和相称先验在纵向数据分析中借用历史对照是有用的,而条件 MPP 由于 I 型错误率膨胀,不建议使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e28/9543736/9f0fd74e0ee3/PST-21-818-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验