Suppr超能文献

选择偏倚对医疗环境中多基因风险评分估计值的影响。

Impact of selection bias on polygenic risk score estimates in healthcare settings.

作者信息

Lee Younga Heather, Thaweethai Tanayott, Sheu Yi-Han, Feng Yen-Chen Anne, Karlson Elizabeth W, Ge Tian, Kraft Peter, Smoller Jordan W

机构信息

Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.

Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

出版信息

Psychol Med. 2023 Nov;53(15):7435-7445. doi: 10.1017/S0033291723001186. Epub 2023 May 25.

Abstract

BACKGROUND

Hospital-based biobanks are being increasingly considered as a resource for translating polygenic risk scores (PRS) into clinical practice. However, since these biobanks originate from patient populations, there is a possibility of bias in polygenic risk estimation due to overrepresentation of patients with higher frequency of healthcare interactions.

METHODS

PRS for schizophrenia, bipolar disorder, and depression were calculated using summary statistics from the largest available genomic studies for a sample of 24 153 European ancestry participants in the Mass General Brigham (MGB) Biobank. To correct for selection bias, we fitted logistic regression models with inverse probability (IP) weights, which were estimated using 1839 sociodemographic, clinical, and healthcare utilization features extracted from electronic health records of 1 546 440 non-Hispanic White patients eligible to participate in the Biobank study at their first visit to the MGB-affiliated hospitals.

RESULTS

Case prevalence of bipolar disorder among participants in the top decile of bipolar disorder PRS was 10.0% (95% CI 8.8-11.2%) in the unweighted analysis but only 6.2% (5.0-7.5%) when selection bias was accounted for using IP weights. Similarly, case prevalence of depression among those in the top decile of depression PRS was reduced from 33.5% (31.7-35.4%) to 28.9% (25.8-31.9%) after IP weighting.

CONCLUSIONS

Non-random selection of participants into volunteer biobanks may induce clinically relevant selection bias that could impact implementation of PRS in research and clinical settings. As efforts to integrate PRS in medical practice expand, recognition and mitigation of these biases should be considered and may need to be optimized in a context-specific manner.

摘要

背景

基于医院的生物样本库越来越被视为将多基因风险评分(PRS)转化为临床实践的资源。然而,由于这些生物样本库源自患者群体,因医疗互动频率较高的患者比例过高,多基因风险估计可能存在偏差。

方法

利用来自最大可用基因组研究的汇总统计数据,为麻省总医院布莱根(MGB)生物样本库中24153名欧洲血统参与者的样本计算精神分裂症、双相情感障碍和抑郁症的PRS。为校正选择偏倚,我们拟合了带逆概率(IP)权重的逻辑回归模型,该权重使用从1546440名符合条件参与生物样本库研究的非西班牙裔白人患者首次就诊于MGB附属医院时的电子健康记录中提取的1839个社会人口统计学、临床和医疗利用特征进行估计。

结果

在未加权分析中,双相情感障碍PRS处于最高十分位数的参与者中双相情感障碍的病例患病率为10.0%(95%CI 8.8 - 11.2%),但在使用IP权重校正选择偏倚后仅为6.2%(5.0 - 7.5%)。同样,在IP加权后,抑郁症PRS处于最高十分位数的参与者中抑郁症的病例患病率从33.5%(31.7 - 35.4%)降至28.9%(25.8 - 31.9%)。

结论

志愿者生物样本库参与者的非随机选择可能会引发具有临床相关性的选择偏倚,这可能会影响PRS在研究和临床环境中的应用。随着将PRS整合到医疗实践中的努力不断扩大,应考虑识别和减轻这些偏倚,并且可能需要根据具体情况进行优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验