Suppr超能文献

深度学习在骨闪烁显像中检测有心脏淀粉样变性风险的异常心脏摄取。

Deep Learning on Bone Scintigraphy to Detect Abnormal Cardiac Uptake at Risk of Cardiac Amyloidosis.

机构信息

Department of Internal Medicine, Amiens University Hospital, Amiens, France; Research Unit 7517, Mécanisme physiopathologiques et conséquences des calcifications cardiovasculaires (MP3CV), Jules Verne Picardie University, Amiens, France. Electronic address: https://twitter.com/ma_delbarre.

Department of Research and Development, Codoc SAS, Paris, France.

出版信息

JACC Cardiovasc Imaging. 2023 Aug;16(8):1085-1095. doi: 10.1016/j.jcmg.2023.01.014. Epub 2023 Apr 12.

Abstract

BACKGROUND

Cardiac uptake on technetium-99m whole-body scintigraphy (WBS) is almost pathognomonic of transthyretin cardiac amyloidosis. The rare false positives are often related to light-chain cardiac amyloidosis. However, this scintigraphic feature remains largely unknown, leading to misdiagnosis despite characteristic images. A retrospective review of all WBSs in a hospital database to detect those with cardiac uptake may allow the identification of undiagnosed patients.

OBJECTIVES

The authors sought to develop and validate a deep learning-based model that automatically detects significant cardiac uptake (Perugini grade ≥2) on WBS from large hospital databases in order to retrieve patients at risk of cardiac amyloidosis.

METHODS

The model is based on a convolutional neural network with image-level labels. The performance evaluation was performed with C-statistics using a 5-fold cross-validation scheme stratified so that the proportion of positive and negative WBSs remained constant across folds and using an external validation data set.

RESULTS

The training data set consisted of 3,048 images: 281 positives (Perugini grade ≥2) and 2,767 negatives. The external validation data set consisted of 1,633 images: 102 positives and 1,531 negatives. The performance of the 5-fold cross-validation and external validation was as follows: 98.9% (± 1.0) and 96.1% for sensitivity, 99.5% (± 0.4) and 99.5% for specificity, and 0.999 (SD = 0.000) and 0.999 for the area under the curve of the receiver-operating characteristic curves. Sex, age <90 years, body mass index, injection-acquisition delay, radionuclides, and the indication of WBS only slightly affected performances.

CONCLUSIONS

The authors' detection model is effective at identifying patients with cardiac uptake Perugini grade ≥2 on WBS and may help in the diagnosis of patients with cardiac amyloidosis.

摘要

背景

锝 99m 全身闪烁扫描(WBS)的心脏摄取几乎是转甲状腺素蛋白心脏淀粉样变性的特征性表现。罕见的假阳性通常与轻链心脏淀粉样变性有关。然而,尽管有特征性图像,这种闪烁扫描特征在很大程度上仍然未知,导致误诊。对医院数据库中的所有 WBS 进行回顾性分析,以发现那些有心脏摄取的患者,可能有助于识别未确诊的患者。

目的

作者试图开发和验证一种基于深度学习的模型,该模型可自动检测大型医院数据库中 WBS 的显著心脏摄取(佩鲁吉尼等级≥2),以检索有心脏淀粉样变性风险的患者。

方法

该模型基于具有图像级标签的卷积神经网络。使用 5 折交叉验证方案进行性能评估,该方案分层,使阳性和阴性 WBS 的比例在各折之间保持不变,并使用外部验证数据集。

结果

训练数据集由 3048 张图像组成:281 张阳性(佩鲁吉尼等级≥2)和 2767 张阴性。外部验证数据集由 1633 张图像组成:102 张阳性和 1531 张阴性。5 折交叉验证和外部验证的性能如下:敏感性为 98.9%(±1.0)和 96.1%,特异性为 99.5%(±0.4)和 99.5%,受试者工作特征曲线下面积为 0.999(SD=0.000)和 0.999。性别、年龄<90 岁、体重指数、注射-采集延迟、放射性核素和 WBS 的适应证仅对性能略有影响。

结论

作者的检测模型能有效识别 WBS 上心脏摄取佩鲁吉尼等级≥2 的患者,有助于心脏淀粉样变性患者的诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验