Suppr超能文献

基于滤波器组任务相关成分分析的上肢运动多类分类。

Multi-Class Classification of Upper Limb Movements With Filter Bank Task-Related Component Analysis.

出版信息

IEEE J Biomed Health Inform. 2023 Aug;27(8):3867-3877. doi: 10.1109/JBHI.2023.3278747. Epub 2023 Aug 7.

Abstract

The classification of limb movements can provide with control commands in non-invasive brain-computer interface. Previous studies on the classification of limb movements have focused on the classification of left/right limbs; however, the classification of different types of upper limb movements has often been ignored despite that it provides more active-evoked control commands in the brain-computer interface. Nevertheless, few machine learning method can be used as the state-of-the-art method in the multi-class classification of limb movements. This work focuses on the multi-class classification of upper limb movements and proposes the multi-class filter bank task-related component analysis (mFBTRCA) method, which consists of three steps: spatial filtering, similarity measuring and filter bank selection. The spatial filter, namely the task-related component analysis, is first used to remove noise from EEG signals. The canonical correlation measures the similarity of the spatial-filtered signals and is used for feature extraction. The correlation features are extracted from multiple low-frequency filter banks. The minimum-redundancy maximum-relevance selects the essential features from all the correlation features, and finally, the support vector machine is used to classify the selected features. The proposed method compared against previously used models is evaluated using two datasets. mFBTRCA achieved a classification accuracy of 0.4193 ± 0.0780 (7 classes) and 0.4032 ± 0.0714 (5 classes), respectively, which improves on the best accuracies achieved using the compared methods (0.3590 ± 0.0645 and 0.3159 ± 0.0736, respectively). The proposed method is expected to provide more control commands in the applications of non-invasive brain-computer interfaces.

摘要

肢体运动的分类可为非侵入式脑机接口提供控制指令。先前有关肢体运动分类的研究主要集中在左右肢体的分类上;然而,尽管不同类型的上肢运动在脑机接口中提供了更多主动诱发的控制指令,但通常忽略了对其进行分类。尽管如此,很少有机器学习方法可以作为肢体运动分类的最新方法。本工作专注于上肢运动的多类分类,并提出了多类滤波器组任务相关成分分析(mFBTRCA)方法,该方法包括三个步骤:空间滤波、相似性测量和滤波器组选择。空间滤波器,即任务相关成分分析,首先用于从 EEG 信号中去除噪声。典型相关测量空间滤波信号的相似性,并用于特征提取。从多个低频滤波器组中提取相关特征。最小冗余最大相关性从所有相关特征中选择必要的特征,最后,支持向量机用于对所选特征进行分类。使用两个数据集对所提出的方法与之前使用的模型进行了比较评估。mFBTRCA 分别实现了 0.4193 ± 0.0780(7 类)和 0.4032 ± 0.0714(5 类)的分类精度,优于使用比较方法(0.3590 ± 0.0645 和 0.3159 ± 0.0736)达到的最佳精度。预计该方法将为非侵入式脑机接口的应用提供更多的控制指令。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验