Suppr超能文献

子带目标对准脑机接口中的共同空间模式。

Sub-band target alignment common spatial pattern in brain-computer interface.

机构信息

School of Automation, Hangzhou DianZi University, Hangzhou 310018, China.

School of Automation, Hangzhou DianZi University, Hangzhou 310018, China.

出版信息

Comput Methods Programs Biomed. 2021 Aug;207:106150. doi: 10.1016/j.cmpb.2021.106150. Epub 2021 May 7.

Abstract

BACKGROUND AND OBJECTIVE

In the brain computer interface (BCI) field, using sub-band common spatial pattern (SBCSP) and filter bank common spatial pattern (FBCSP) can improve the accuracy of classification by selection a specific frequency band. However, in the cross-subject classification, due to the individual differences between different subjects, the performance is limited.

METHODS

This paper introduces the idea of transfer learning and presents the sub-band target alignment common spatial pattern (SBTACSP) method and applies it to the cross-subject classification of motor imagery (MI) EEG signals. First, the EEG signals are bandpass-filtered into multiple frequency bands (sub-band filtering). Subsequently, the source domain trails are aligned into the target domain space in each frequency band. The CSP algorithm is then employed to extract features among which more representative features are selected by the minimum redundancy maximum relevance (mRMR) approach from each sub-band. Then the features of all sub-bands are fused. Finally, conventional linear discriminant analysis (LDA) algorithm is used for MI classification.

RESULTS

Our method is evaluated on Datasets Ⅱa and Ⅱb of the BCI Competition Ⅳ. Compared with six state-of-the-art algorithms, the proposed SBTACSP method performed relatively the best and achieved a mean classification accuracy of 75.15% and 66.85% in cross-subject classification of Datasets Ⅱa and Ⅱb respectively.

CONCLUSION

Therefore, the combination of sub-band filtering and transfer learning achieves superior classification performance compared to either one. The proposed algorithms will greatly promote the practical application of MI based BCIs.

摘要

背景与目的

在脑机接口(BCI)领域,使用子带共空间模式(SBCSP)和滤波器组共空间模式(FBCSP)可以通过选择特定的频段来提高分类的准确性。然而,在跨被试分类中,由于不同个体之间的个体差异,其性能受到限制。

方法

本文引入了迁移学习的思想,并提出了子带目标对齐共空间模式(SBTACSP)方法,并将其应用于运动想象(MI)EEG 信号的跨被试分类。首先,将 EEG 信号进行带通滤波到多个频段(子带滤波)。然后,在每个频段中将源域轨迹对齐到目标域空间。然后使用 CSP 算法提取特征,其中每个子带通过最小冗余最大相关性(mRMR)方法选择更具代表性的特征。然后融合所有子带的特征。最后,使用传统的线性判别分析(LDA)算法进行 MI 分类。

结果

我们的方法在 BCI 竞赛 IV 的数据集Ⅱa 和Ⅱb 上进行了评估。与六种最先进的算法相比,所提出的 SBTACSP 方法表现相对最好,在数据集Ⅱa 和Ⅱb 的跨被试分类中分别达到了 75.15%和 66.85%的平均分类准确率。

结论

因此,子带滤波和迁移学习的结合比单独使用其中任何一种方法都能实现更好的分类性能。所提出的算法将极大地促进基于 MI 的 BCI 的实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验