Suppr超能文献

从横断面转录组数据推断进化轨迹,以反映肺腺癌的进展。

Inferring evolutionary trajectories from cross-sectional transcriptomic data to mirror lung adenocarcinoma progression.

机构信息

School of Life Science and Technology, Xidian University, Xi'an, China.

West China Biomedical Big Data Centre, West China Hospital of Sichuan University, Chengdu, China.

出版信息

PLoS Comput Biol. 2023 May 25;19(5):e1011122. doi: 10.1371/journal.pcbi.1011122. eCollection 2023 May.

Abstract

Lung adenocarcinoma (LUAD) is a deadly tumor with dynamic evolutionary process. Although much endeavors have been made in identifying the temporal patterns of cancer progression, it remains challenging to infer and interpret the molecular alterations associated with cancer development and progression. To this end, we developed a computational approach to infer the progression trajectory based on cross-sectional transcriptomic data. Analysis of the LUAD data using our approach revealed a linear trajectory with three different branches for malignant progression, and the results showed consistency in three independent cohorts. We used the progression model to elucidate the potential molecular events in LUAD progression. Further analysis showed that overexpression of BUB1B, BUB1 and BUB3 promoted tumor cell proliferation and metastases by disturbing the spindle assembly checkpoint (SAC) in the mitosis. Aberrant mitotic spindle checkpoint signaling appeared to be one of the key factors promoting LUAD progression. We found the inferred cancer trajectory allows to identify LUAD susceptibility genetic variations using genome-wide association analysis. This result shows the opportunity for combining analysis of candidate genetic factors with disease progression. Furthermore, the trajectory showed clear evident mutation accumulation and clonal expansion along with the LUAD progression. Understanding how tumors evolve and identifying mutated genes will help guide cancer management. We investigated the clonal architectures and identified distinct clones and subclones in different LUAD branches. Validation of the model in multiple independent data sets and correlation analysis with clinical results demonstrate that our method is effective and unbiased.

摘要

肺腺癌(LUAD)是一种具有动态进化过程的致命肿瘤。尽管在识别癌症进展的时间模式方面已经做出了很多努力,但推断和解释与癌症发生和进展相关的分子变化仍然具有挑战性。为此,我们开发了一种基于横截面转录组数据推断进展轨迹的计算方法。使用我们的方法对 LUAD 数据进行分析,揭示了恶性进展的线性轨迹和三个不同分支,结果在三个独立队列中表现出一致性。我们使用进展模型阐明 LUAD 进展中的潜在分子事件。进一步分析表明,BUB1B、BUB1 和 BUB3 的过表达通过扰乱有丝分裂中的纺锤体组装检查点(SAC),促进肿瘤细胞增殖和转移。有丝分裂中纺锤体检查点信号的异常似乎是促进 LUAD 进展的关键因素之一。我们发现推断出的癌症轨迹允许使用全基因组关联分析来识别 LUAD 易感性遗传变异。这一结果表明了将候选遗传因素分析与疾病进展相结合的机会。此外,该轨迹显示了 LUAD 进展过程中明显的突变积累和克隆扩张。了解肿瘤如何进化以及识别突变基因将有助于指导癌症管理。我们研究了克隆结构,并在不同的 LUAD 分支中鉴定了不同的克隆和亚克隆。该模型在多个独立数据集的验证和与临床结果的相关分析表明,我们的方法是有效和无偏的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f06b/10246837/b9d534aa716c/pcbi.1011122.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验