Suppr超能文献

基于模型优化的可适应神经内电极(AIR)设计,用于选择性神经刺激。

Design of an adaptable intrafascicular electrode (AIR) for selective nerve stimulation by model-based optimization.

机构信息

Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland.

出版信息

PLoS Comput Biol. 2023 May 25;19(5):e1011184. doi: 10.1371/journal.pcbi.1011184. eCollection 2023 May.

Abstract

Peripheral nerve stimulation is being investigated as a therapeutic tool in several clinical scenarios. However, the adopted devices have restricted ability to obtain desired outcomes with tolerable off-target effects. Recent promising solutions are not yet employed in clinical practice due to complex required surgeries, lack of long-term stability, and implant invasiveness. Here, we aimed to design a neural interface to address these issues, specifically dimensioned for pudendal and sacral nerves to potentially target sexual, bladder, or bowel dysfunctions. We designed the adaptable intrafascicular radial electrode (AIR) through realistic computational models. They account for detailed human anatomy, inhomogeneous anisotropic conductance, following the trajectories of axons along curving and branching fascicles, and detailed biophysics of axons. The model was validated against available experimental data. Thanks to computationally efficient geometry-based selectivity estimations we informed the electrode design, optimizing its dimensions to obtain the highest selectivity while maintaining low invasiveness. We then compared the AIR with state-of-the-art electrodes, namely InterStim leads, multipolar cuffs and transversal intrafascicular multichannel electrodes (TIME). AIR, comprising a flexible substrate, surface active sites, and radially inserted intrafascicular needles, is designed to be implanted in a few standard steps, potentially enabling fast implants. It holds potential for repeatable stimulation outcomes thanks to its radial structural symmetry. When compared in-silico, AIR consistently outperformed cuff electrodes and InterStim leads in terms of recruitment threshold and stimulation selectivity. AIR performed similarly or better than a TIME, with quantified less invasiveness. Finally, we showed how AIR can adapt to different nerve sizes and varying shapes while maintaining high selectivity. The AIR electrode shows the potential to fill a clinical need for an effective peripheral nerve interface. Its high predicted performance in all the identified requirements was enabled by a model-based approach, readily applicable for the optimization of electrode parameters in any peripheral nerve stimulation scenario.

摘要

周围神经刺激作为一种治疗工具,在多个临床环境中都有被研究。然而,所采用的设备在获得理想效果的同时,对目标外的影响的控制能力有限。最近的一些有前途的解决方案,由于复杂的手术要求、缺乏长期稳定性和植入物的侵入性,尚未在临床实践中应用。在这里,我们旨在设计一种神经接口来解决这些问题,具体针对阴部和骶神经进行设计,以潜在地针对性功能障碍、膀胱功能障碍或肠功能障碍进行治疗。我们通过现实的计算模型设计了可适应的束内放射电极(AIR)。这些模型考虑了详细的人体解剖结构、各向异性的不均匀导电性、沿着弯曲和分支束的轴突轨迹、以及轴突的详细生物物理特性。该模型经过了可用实验数据的验证。由于基于计算效率的几何选择率估计,我们提供了电极设计的信息,优化了其尺寸,以在保持低侵入性的同时获得最高的选择率。然后,我们将 AIR 与最先进的电极,即 InterStim 导联、多极袖带和横向束内多通道电极(TIME)进行了比较。AIR 由柔性基底、表面活性位点和径向插入的束内针组成,设计为可以通过几个标准步骤进行植入,有可能实现快速植入。由于其径向结构对称性,它具有重复刺激效果的潜力。在计算机模拟中,AIR 在招募阈值和刺激选择性方面始终优于袖带电极和 InterStim 导联。在量化的侵入性方面,AIR 与 TIME 性能相似或更好。最后,我们展示了 AIR 如何在保持高选择性的同时,适应不同的神经大小和不同的形状。AIR 电极显示出有潜力满足有效周围神经接口的临床需求。其在所有确定的要求中都表现出高预测性能,这得益于基于模型的方法,可方便地应用于任何周围神经刺激场景中电极参数的优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b79/10246853/f20576fd420c/pcbi.1011184.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验