Toni Laura, Pierantoni Luca, Verardo Claudio, Romeni Simone, Micera Silvestro
Modular Implantable Neurotechnologies (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, Milan, Italy.
The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.
Bioelectromagnetics. 2025 Jan;46(1):e22535. doi: 10.1002/bem.22535.
Electrical stimulation of peripheral nerves via implanted electrodes has been shown to be a promising approach to restore sensation, movement, and autonomic functions across a wide range of illnesses and injuries. While in principle computational models of neuromodulation can allow the exploration of large parameter spaces and the automatic optimization of stimulation devices and strategies, their high time complexity hinders their use on a large scale. We recently proposed the use of machine learning-based surrogate models to estimate the activation of nerve fibers under electrical stimulation, producing a considerable speed-up with respect to biophysically accurate models of fiber excitation while retaining good predictivity. Here, we characterize the performance of four frequently employed machine learning algorithms and provide an illustrative example of their ability to generalize to unseen stimulation protocols, stimulating sites, and nerve sections. We then discuss how the ability to generalize to such scenarios is relevant to different optimization protocols, paving the way for the automatic optimization of neuromodulation applications.
通过植入电极对外周神经进行电刺激已被证明是一种很有前景的方法,可用于恢复各种疾病和损伤后的感觉、运动及自主神经功能。虽然原则上神经调节的计算模型能够探索大参数空间,并自动优化刺激装置和策略,但其高时间复杂度阻碍了它们的大规模应用。我们最近提出使用基于机器学习的替代模型来估计电刺激下神经纤维的激活情况,相较于纤维兴奋的生物物理精确模型,该模型在保持良好预测性的同时,显著提高了计算速度。在此,我们对四种常用机器学习算法的性能进行了表征,并给出一个示例,说明它们对未见过的刺激方案、刺激部位和神经节段进行泛化的能力。然后,我们讨论了这种对不同场景进行泛化的能力如何与不同的优化方案相关,为神经调节应用的自动优化铺平了道路。