Suppr超能文献

红腹食人鱼优化算法(RPO):一种用于解决复杂优化问题的受自然启发的元启发式算法。

Red piranha optimization (RPO): a natural inspired meta-heuristic algorithm for solving complex optimization problems.

作者信息

Rabie Asmaa H, Saleh Ahmed I, Mansour Nehal A

机构信息

Computers and Control Department, Faculty of Engineering Mansoura University, Mansoura, Egypt.

出版信息

J Ambient Intell Humaniz Comput. 2023;14(6):7621-7648. doi: 10.1007/s12652-023-04573-1. Epub 2023 Mar 17.

Abstract

An optimization algorithm is a step-by-step procedure which aims to achieve an optimum value (maximum or minimum) of an objective function. Several natural inspired meta-heuristic algorithms have been inspired to solve complex optimization problems by utilizing the potential advantages of swarm intelligence. In this paper, a new nature-inspired optimization algorithm which mimics the social hunting behavior of Red Piranha is developed, which is called Red Piranha Optimization (RPO). Although the piranha fish is famous for its extreme ferocity and thirst for blood, it sets the best examples of cooperation and organized teamwork, especially in the case of hunting or saving their eggs. The proposed RPO is established through three sequential phases, namely; (i) searching for a prey, (ii) encircling the prey, and (iii) attacking the prey. A mathematical model is provided for each phase of the proposed algorithm. RPO has salient properties such as; (i) it is very simple and easy to implement, (ii) it has a perfect ability to bypass local optima, and (iii) it can be employed for solving complex optimization problems covering different disciplines. To ensure the efficiency of the proposed RPO, it has been applied in feature selection, which is one of the important steps in solving the classification problem. Hence, recent bio-inspired optimization algorithms as well as the proposed RPO have been employed for selecting the most important features for diagnosing Covid-19. Experimental results have proven the effectiveness of the proposed RPO as it outperforms the recent bio-inspired optimization techniques according to accuracy, execution time, micro average precision, micro average recall, macro average precision, macro average recall, and f-measure calculations.

摘要

优化算法是一种逐步的过程,旨在实现目标函数的最优值(最大值或最小值)。受自然界启发,人们开发了几种元启发式算法,通过利用群体智能的潜在优势来解决复杂的优化问题。本文提出了一种受自然界启发的新优化算法,它模仿了红腹食人鱼的社会狩猎行为,称为红腹食人鱼优化算法(RPO)。尽管食人鱼以其极度凶猛和嗜血而闻名,但它却是合作和有组织团队合作的最佳典范,尤其是在狩猎或保护鱼卵的情况下。所提出的RPO算法通过三个连续阶段建立,即:(i)寻找猎物,(ii)包围猎物,以及(iii)攻击猎物。为该算法的每个阶段提供了一个数学模型。RPO具有显著特性,例如:(i)非常简单且易于实现,(ii)具有完美的绕过局部最优的能力,以及(iii)可用于解决涵盖不同学科的复杂优化问题。为确保所提出的RPO算法的效率,已将其应用于特征选择,这是解决分类问题的重要步骤之一。因此,最近的生物启发优化算法以及所提出的RPO算法已被用于选择诊断新冠肺炎最重要的特征。实验结果证明了所提出的RPO算法的有效性,因为根据准确率、执行时间、微平均精度、微平均召回率、宏平均精度、宏平均召回率和F值计算,它优于最近的生物启发优化技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b41a/10020777/fb4c42d95911/12652_2023_4573_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验