Suppr超能文献

基于定量构效关系的心脏毒性建模:采用增强表达能力的图学习模型和双阈值方案

On QSAR-based cardiotoxicity modeling with the expressiveness-enhanced graph learning model and dual-threshold scheme.

作者信息

Wang Huijia, Zhu Guangxian, Izu Leighton T, Chen-Izu Ye, Ono Naoaki, Altaf-Ul-Amin M D, Kanaya Shigehiko, Huang Ming

机构信息

Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.

Department of Pharmacology, University of California, Davis, CA, United States.

出版信息

Front Physiol. 2023 May 9;14:1156286. doi: 10.3389/fphys.2023.1156286. eCollection 2023.

Abstract

Given the direct association with malignant ventricular arrhythmias, cardiotoxicity is a major concern in drug design. In the past decades, computational models based on the quantitative structure-activity relationship have been proposed to screen out cardiotoxic compounds and have shown promising results. The combination of molecular fingerprint and the machine learning model shows stable performance for a wide spectrum of problems; however, not long after the advent of the graph neural network (GNN) deep learning model and its variant (e.g., graph transformer), it has become the principal way of quantitative structure-activity relationship-based modeling for its high flexibility in feature extraction and decision rule generation. Despite all these progresses, the expressiveness (the ability of a program to identify non-isomorphic graph structures) of the GNN model is bounded by the WL isomorphism test, and a suitable thresholding scheme that relates directly to the sensitivity and credibility of a model is still an open question. In this research, we further improved the expressiveness of the GNN model by introducing the substructure-aware bias by the graph subgraph transformer network model. Moreover, to propose the most appropriate thresholding scheme, a comprehensive comparison of the thresholding schemes was conducted. Based on these improvements, the best model attains performance with 90.4% precision, 90.4% recall, and 90.5% F1-score with a dual-threshold scheme (active: ; non-active: ). The improved pipeline (graph subgraph transformer network model and thresholding scheme) also shows its advantages in terms of the activity cliff problem and model interpretability.

摘要

鉴于与恶性室性心律失常的直接关联,心脏毒性是药物设计中的一个主要关注点。在过去几十年中,基于定量构效关系的计算模型已被提出用于筛选出具有心脏毒性的化合物,并显示出了有前景的结果。分子指纹与机器学习模型的结合在广泛的问题上表现出稳定的性能;然而,在图神经网络(GNN)深度学习模型及其变体(如图形变换器)出现后不久,由于其在特征提取和决策规则生成方面的高度灵活性,它已成为基于定量构效关系建模的主要方式。尽管取得了所有这些进展,但GNN模型的表达能力(程序识别非同构图结构的能力)受限于WL同构测试,并且直接与模型的敏感性和可信度相关的合适阈值方案仍然是一个悬而未决的问题。在本研究中,我们通过图子图变换器网络模型引入子结构感知偏差,进一步提高了GNN模型的表达能力。此外,为了提出最合适的阈值方案,我们对阈值方案进行了全面比较。基于这些改进,最佳模型采用双阈值方案(活性:;非活性:)时,精确率达到90.4%,召回率达到90.4%,F1分数达到90.5%。改进后的流程(图子图变换器网络模型和阈值方案)在活性悬崖问题和模型可解释性方面也显示出了优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94dd/10203956/4a97bddae7a6/fphys-14-1156286-g001.jpg

相似文献

1
On QSAR-based cardiotoxicity modeling with the expressiveness-enhanced graph learning model and dual-threshold scheme.
Front Physiol. 2023 May 9;14:1156286. doi: 10.3389/fphys.2023.1156286. eCollection 2023.
2
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):657-668. doi: 10.1109/TPAMI.2022.3154319. Epub 2022 Dec 5.
3
PSA-GNN: An augmented GNN framework with priori subgraph knowledge.
Neural Netw. 2024 May;173:106155. doi: 10.1016/j.neunet.2024.106155. Epub 2024 Feb 4.
4
CI-GNN: A Granger causality-inspired graph neural network for interpretable brain network-based psychiatric diagnosis.
Neural Netw. 2024 Apr;172:106147. doi: 10.1016/j.neunet.2024.106147. Epub 2024 Jan 26.
5
Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding.
BMC Bioinformatics. 2022 May 2;23(Suppl 3):158. doi: 10.1186/s12859-022-04681-3.
6
GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction.
Comput Biol Med. 2024 May;173:108339. doi: 10.1016/j.compbiomed.2024.108339. Epub 2024 Mar 18.
7
Multiphysical graph neural network (MP-GNN) for COVID-19 drug design.
Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac231.
8
Employing Graph Neural Networks for Predicting Electrode Average Voltages and Screening High-Voltage Sodium Cathode Materials.
ACS Appl Mater Interfaces. 2024 May 15;16(19):24494-24501. doi: 10.1021/acsami.4c00624. Epub 2024 May 4.
10
Graph neural network-based breast cancer diagnosis using ultrasound images with optimized graph construction integrating the medically significant features.
J Cancer Res Clin Oncol. 2023 Dec;149(20):18039-18064. doi: 10.1007/s00432-023-05464-w. Epub 2023 Nov 20.

引用本文的文献

1
Using the Correlation Intensity Index to Build a Model of Cardiotoxicity of Piperidine Derivatives.
Molecules. 2023 Sep 12;28(18):6587. doi: 10.3390/molecules28186587.

本文引用的文献

1
Graph neural networks for materials science and chemistry.
Commun Mater. 2022;3(1):93. doi: 10.1038/s43246-022-00315-6. Epub 2022 Nov 26.
2
Exposing the Limitations of Molecular Machine Learning with Activity Cliffs.
J Chem Inf Model. 2022 Dec 12;62(23):5938-5951. doi: 10.1021/acs.jcim.2c01073. Epub 2022 Dec 1.
3
Ligand-based prediction of hERG-mediated cardiotoxicity based on the integration of different machine learning techniques.
Front Pharmacol. 2022 Sep 5;13:951083. doi: 10.3389/fphar.2022.951083. eCollection 2022.
5
Use of Solvent Mapping for Characterizing the Binding Site and for Predicting the Inhibition of the Human Ether-á-Go-Go-Related K Channel.
Chem Res Toxicol. 2022 Aug 15;35(8):1359-1369. doi: 10.1021/acs.chemrestox.2c00036. Epub 2022 Jul 27.
6
ACGCN: Graph Convolutional Networks for Activity Cliff Prediction between Matched Molecular Pairs.
J Chem Inf Model. 2022 May 23;62(10):2341-2351. doi: 10.1021/acs.jcim.2c00327. Epub 2022 May 6.
7
HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models.
J Chem Inf Model. 2022 Apr 25;62(8):1830-1839. doi: 10.1021/acs.jcim.2c00256. Epub 2022 Apr 11.
8
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):657-668. doi: 10.1109/TPAMI.2022.3154319. Epub 2022 Dec 5.
9
Structure-Based Prediction of hERG-Related Cardiotoxicity: A Benchmark Study.
J Chem Inf Model. 2021 Sep 27;61(9):4758-4770. doi: 10.1021/acs.jcim.1c00744. Epub 2021 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验