Department of Statistics and Data Science, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 03722, South Korea.
TESSER Inc., 544 Eonju-ro, Gangnam-gu, Seoul 06147, South Korea.
J Chem Inf Model. 2022 May 23;62(10):2341-2351. doi: 10.1021/acs.jcim.2c00327. Epub 2022 May 6.
One of the interesting issues in drug-target interaction studies is the activity cliff (AC), which is usually defined as structurally similar compounds with large differences in activity toward a common target. The AC is of great interest in medicinal chemistry as it may provide clues to understanding the complex properties of the target proteins, paving the way for practical applications aimed at the discovery of more potent drugs. In this paper, we propose graph convolutional networks for the prediction of AC and designate the proposed models as Activity Cliff prediction using Graph Convolutional Networks (ACGCNs). The results show that ACGCNs outperform several off-the-shelf methods when predicting ACs of three popular target data sets for thrombin, Mu opioid receptor, and melanocortin receptor. Finally, we utilize gradient-weighted class activation mapping to visualize activation weights at nodes in the molecular graphs, demonstrating its potential to contribute to the ability to identify important substructures for molecular docking.
药物-靶标相互作用研究中的一个有趣问题是活性悬崖(AC),通常将其定义为结构相似但对共同靶标活性差异很大的化合物。AC 在药物化学中很有意义,因为它可能为理解靶蛋白的复杂性质提供线索,为旨在发现更有效药物的实际应用铺平道路。在本文中,我们提出了用于预测 AC 的图卷积网络,并将所提出的模型命名为使用图卷积网络的活性悬崖预测(ACGCN)。结果表明,当预测凝血酶、μ阿片受体和黑皮质素受体三种流行靶标数据集的 AC 时,ACGCN 优于几种现成的方法。最后,我们利用梯度加权类激活映射来可视化分子图中节点的激活权重,证明它有可能有助于识别分子对接的重要子结构的能力。