文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于启发式加速强化学习的神经外科手术路径规划器。

A Heuristically Accelerated Reinforcement Learning-Based Neurosurgical Path Planner.

作者信息

Ji Guanglin, Gao Qian, Zhang Tianwei, Cao Lin, Sun Zhenglong

机构信息

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.

Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.

出版信息

Cyborg Bionic Syst. 2023 May 11;4:0026. doi: 10.34133/cbsystems.0026. eCollection 2023.


DOI:10.34133/cbsystems.0026
PMID:37229101
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10204738/
Abstract

The steerable needle becomes appealing in the neurosurgery intervention procedure because of its flexibility to bypass critical regions inside the brain; with proper path planning, it can also minimize the potential damage by setting constraints and optimizing the insertion path. Recently, reinforcement learning (RL)-based path planning algorithm has shown promising results in neurosurgery, but because of the trial and error mechanism, it can be computationally expensive and insecure with low training efficiency. In this paper, we propose a heuristically accelerated deep Q network (DQN) algorithm to safely preoperatively plan a needle insertion path in a neurosurgical environment. Furthermore, a fuzzy inference system is integrated into the framework as a balance of the heuristic policy and the RL algorithm. Simulations are conducted to test the proposed method in comparison to the traditional greedy heuristic searching algorithm and DQN algorithms. Tests showed promising results of our algorithm in saving over 50 training episodes, calculating path lengths of 0.35 after normalization, which is 0.61 and 0.39 for DQN and traditional greedy heuristic searching algorithm, respectively. Moreover, the maximum curvature during planning is reduced to 0.046 from 0.139 mm using the proposed algorithm compared to DQN.

摘要

可操纵针在神经外科手术干预过程中很有吸引力,因为它具有绕过脑内关键区域的灵活性;通过适当的路径规划,它还可以通过设置约束和优化插入路径来最小化潜在损伤。最近,基于强化学习(RL)的路径规划算法在神经外科手术中显示出了有前景的结果,但由于试错机制,它可能计算成本高昂且不安全,训练效率低。在本文中,我们提出了一种启发式加速深度Q网络(DQN)算法,以在神经外科手术环境中安全地术前规划针插入路径。此外,一个模糊推理系统被集成到框架中,作为启发式策略和RL算法的平衡。进行了仿真,以将所提出的方法与传统贪婪启发式搜索算法和DQN算法进行比较测试。测试显示了我们算法的有前景结果,节省了超过50个训练episode,归一化后计算出的路径长度为0.35,而DQN和传统贪婪启发式搜索算法分别为0.61和0.39。此外,与DQN相比,使用所提出的算法在规划过程中的最大曲率从0.139毫米降低到了0.046。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/37bf5612b651/cbsystems.0026.fig.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/1ca378779328/cbsystems.0026.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/ae5f3371d4d1/cbsystems.0026.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/d8c64c364066/cbsystems.0026.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/0ce723b6853a/cbsystems.0026.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/e2f465c27e61/cbsystems.0026.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/7f48a5b87c7e/cbsystems.0026.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/3ec0b27191b1/cbsystems.0026.fig.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/66908f721165/cbsystems.0026.fig.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/4a477ec35ed8/cbsystems.0026.fig.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/37bf5612b651/cbsystems.0026.fig.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/1ca378779328/cbsystems.0026.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/ae5f3371d4d1/cbsystems.0026.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/d8c64c364066/cbsystems.0026.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/0ce723b6853a/cbsystems.0026.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/e2f465c27e61/cbsystems.0026.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/7f48a5b87c7e/cbsystems.0026.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/3ec0b27191b1/cbsystems.0026.fig.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/66908f721165/cbsystems.0026.fig.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/4a477ec35ed8/cbsystems.0026.fig.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d6/10204738/37bf5612b651/cbsystems.0026.fig.010.jpg

相似文献

[1]
A Heuristically Accelerated Reinforcement Learning-Based Neurosurgical Path Planner.

Cyborg Bionic Syst. 2023-5-11

[2]
Inverse Reinforcement Learning Intra-Operative Path Planning for Steerable Needle.

IEEE Trans Biomed Eng. 2022-6

[3]
A Mapless Local Path Planning Approach Using Deep Reinforcement Learning Framework.

Sensors (Basel). 2023-2-10

[4]
Approximate Policy-Based Accelerated Deep Reinforcement Learning.

IEEE Trans Neural Netw Learn Syst. 2020-6

[5]
Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.

Sensors (Basel). 2020-9-25

[6]
Multisource Transfer Double DQN Based on Actor Learning.

IEEE Trans Neural Netw Learn Syst. 2018-6

[7]
Slicing Resource Allocation Based on Dueling DQN for eMBB and URLLC Hybrid Services in Heterogeneous Integrated Networks.

Sensors (Basel). 2023-2-24

[8]
Enhancing Stability and Performance in Mobile Robot Path Planning with PMR-Dueling DQN Algorithm.

Sensors (Basel). 2024-2-27

[9]
Path Planning Algorithm for Unmanned Surface Vessel Based on Multiobjective Reinforcement Learning.

Comput Intell Neurosci. 2023

[10]
Improved Robot Path Planning Method Based on Deep Reinforcement Learning.

Sensors (Basel). 2023-6-15

引用本文的文献

[1]
Multi-strategy hybrid adaptive dung beetle optimization for UAV photogrammetric 3D path planning under complex constraints.

Sci Rep. 2025-4-29

[2]
Dynamic path planning of UAV with least inflection point based on adaptive neighborhood A* algorithm and multi-strategy fusion.

Sci Rep. 2025-3-12

[3]
Design of Path-Planning System for Interventional Thermal Ablation of Liver Tumors Based on CT Images.

Sensors (Basel). 2024-5-30

[4]
Intermodal travel planning and decision support integrated with transportation and energy systems.

Heliyon. 2024-5-21

本文引用的文献

[1]
Inverse Reinforcement Learning Intra-Operative Path Planning for Steerable Needle.

IEEE Trans Biomed Eng. 2022-6

[2]
Backward Planning for a Multi-Stage Steerable Needle Lung Robot.

IEEE Robot Autom Lett. 2021-4

[3]
Biopsy Needle System With a Steerable Concentric Tube and Online Monitoring of Electrical Resistivity and Insertion Forces.

IEEE Trans Biomed Eng. 2021-5

[4]
3D path planning for flexible needle steering in neurosurgery.

Int J Med Robot. 2019-5-9

[5]
The role of automatic computer-aided surgical trajectory planning in improving the expected safety of stereotactic neurosurgery.

Int J Comput Assist Radiol Surg. 2015-7

[6]
The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository.

J Digit Imaging. 2013-12

[7]
Heuristically-accelerated multiagent reinforcement learning.

IEEE Trans Cybern. 2014-2

[8]
3D Slicer as an image computing platform for the Quantitative Imaging Network.

Magn Reson Imaging. 2012-7-6

[9]
Modeling and control of needles with torsional friction.

IEEE Trans Biomed Eng. 2009-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索