Suppr超能文献

LightMixer:一种用于番茄病害检测的新型轻量级卷积神经网络。

LightMixer: A novel lightweight convolutional neural network for tomato disease detection.

作者信息

Zhong Yi, Teng Zihan, Tong Mengjun

机构信息

College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China.

School of Design, The Hong Kong Polytechnic University, Hong Kong, Hong Kong, SAR, China.

出版信息

Front Plant Sci. 2023 May 9;14:1166296. doi: 10.3389/fpls.2023.1166296. eCollection 2023.

Abstract

Tomatoes are among the very important crops grown worldwide. However, tomato diseases can harm the health of tomato plants during growth and reduce tomato yields over large areas. The development of computer vision technology offers the prospect of solving this problem. However, traditional deep learning algorithms require a high computational cost and several parameters. Therefore, a lightweight tomato leaf disease identification model called LightMixer was designed in this study. The LightMixer model comprises a depth convolution with a Phish module and a light residual module. Depth convolution with the Phish module represents a lightweight convolution module designed to splice nonlinear activation functions with depth convolution as the backbone; it also focuses on lightweight convolutional feature extraction to facilitate deep feature fusion. The light residual module was built based on lightweight residual blocks to accelerate the computational efficiency of the entire network architecture and reduce the information loss of disease features. Experimental results show that the proposed LightMixer model achieved 99.3% accuracy on public datasets while requiring only 1.5 M parameters, an improvement over other classical convolutional neural network and lightweight models, and can be used for automatic tomato leaf disease identification on mobile devices.

摘要

番茄是全球种植的非常重要的作物之一。然而,番茄病害会在番茄生长过程中损害植株健康,并大面积降低番茄产量。计算机视觉技术的发展为解决这一问题带来了希望。然而,传统的深度学习算法需要高昂的计算成本和多个参数。因此,本研究设计了一种名为LightMixer的轻量级番茄叶部病害识别模型。LightMixer模型由一个带有Phish模块的深度卷积和一个轻量级残差模块组成。带有Phish模块的深度卷积是一个轻量级卷积模块,旨在以深度卷积为骨干,将非线性激活函数进行拼接;它还专注于轻量级卷积特征提取,以促进深度特征融合。轻量级残差模块基于轻量级残差块构建,以加速整个网络架构的计算效率,并减少病害特征的信息损失。实验结果表明,所提出的LightMixer模型在公共数据集上达到了99.3%的准确率,同时仅需150万个参数,优于其他经典卷积神经网络和轻量级模型,可用于移动设备上的番茄叶部病害自动识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaa9/10203629/30aadb0d42af/fpls-14-1166296-g001.jpg

相似文献

1
LightMixer: A novel lightweight convolutional neural network for tomato disease detection.
Front Plant Sci. 2023 May 9;14:1166296. doi: 10.3389/fpls.2023.1166296. eCollection 2023.
2
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network.
Front Bioeng Biotechnol. 2022 Aug 16;10:861286. doi: 10.3389/fbioe.2022.861286. eCollection 2022.
3
MGA-YOLO: A lightweight one-stage network for apple leaf disease detection.
Front Plant Sci. 2022 Aug 22;13:927424. doi: 10.3389/fpls.2022.927424. eCollection 2022.
4
Monocular Depth Estimation: Lightweight Convolutional and Matrix Capsule Feature-Fusion Network.
Sensors (Basel). 2022 Aug 23;22(17):6344. doi: 10.3390/s22176344.
5
Lightweight monocular depth estimation using a fusion-improved transformer.
Sci Rep. 2024 Sep 28;14(1):22472. doi: 10.1038/s41598-024-72682-8.
6
An occluded cherry tomato recognition model based on improved YOLOv7.
Front Plant Sci. 2023 Oct 20;14:1260808. doi: 10.3389/fpls.2023.1260808. eCollection 2023.
7
[A lightweight recurrence prediction model for high grade serous ovarian cancer based on hierarchical transformer fusion metadata].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Aug 25;41(4):807-817. doi: 10.7507/1001-5515.202308009.
8
Rethinking 1D convolution for lightweight semantic segmentation.
Front Neurorobot. 2023 Feb 9;17:1119231. doi: 10.3389/fnbot.2023.1119231. eCollection 2023.
9
PMVT: a lightweight vision transformer for plant disease identification on mobile devices.
Front Plant Sci. 2023 Sep 26;14:1256773. doi: 10.3389/fpls.2023.1256773. eCollection 2023.
10
Lightweight Corn Leaf Detection and Counting Using Improved YOLOv8.
Sensors (Basel). 2024 Aug 15;24(16):5279. doi: 10.3390/s24165279.

引用本文的文献

1
XLTLDisNet: A novel and lightweight approach to identify tomato leaf diseases with transparency.
Heliyon. 2025 Feb 11;11(4):e42575. doi: 10.1016/j.heliyon.2025.e42575. eCollection 2025 Feb 28.
2
Classification of tomato leaf disease using Transductive Long Short-Term Memory with an attention mechanism.
Front Plant Sci. 2025 Jan 21;15:1467811. doi: 10.3389/fpls.2024.1467811. eCollection 2024.
3
A Review of CNN Applications in Smart Agriculture Using Multimodal Data.
Sensors (Basel). 2025 Jan 15;25(2):472. doi: 10.3390/s25020472.
4
A lightweight CNN model for pepper leaf disease recognition in a human palm background.
Heliyon. 2024 Jun 22;10(12):e33447. doi: 10.1016/j.heliyon.2024.e33447. eCollection 2024 Jun 30.
5
Moisture content online detection system based on multi-sensor fusion and convolutional neural network.
Front Plant Sci. 2024 Mar 4;15:1289783. doi: 10.3389/fpls.2024.1289783. eCollection 2024.

本文引用的文献

1
DCCAM-MRNet: Mixed Residual Connection Network with Dilated Convolution and Coordinate Attention Mechanism for Tomato Disease Identification.
Comput Intell Neurosci. 2022 Apr 15;2022:4848425. doi: 10.1155/2022/4848425. eCollection 2022.
2
Attention-Based Recurrent Neural Network for Plant Disease Classification.
Front Plant Sci. 2020 Dec 14;11:601250. doi: 10.3389/fpls.2020.601250. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验