Suppr超能文献

深度学习分割模型在局部晚期乳腺癌中的临床评估,后续包括手动调整。

Clinical evaluation of a deep learning segmentation model including manual adjustments afterwards for locally advanced breast cancer.

作者信息

Bakx Nienke, Rijkaart Dorien, van der Sangen Maurice, Theuws Jacqueline, van der Toorn Peter-Paul, Verrijssen An-Sofie, van der Leer Jorien, Mutsaers Joline, van Nunen Thérèse, Reinders Marjon, Schuengel Inge, Smits Julia, Hagelaar Els, van Gruijthuijsen Dave, Bluemink Hanneke, Hurkmans Coen

机构信息

Catharina Hospital, Department of Radiation Oncology, Eindhoven, the Netherlands.

Technical University Eindhoven, Faculties of Physics and Electrical Engineering, Eindhoven, the Netherlands.

出版信息

Tech Innov Patient Support Radiat Oncol. 2023 May 13;26:100211. doi: 10.1016/j.tipsro.2023.100211. eCollection 2023 Jun.

Abstract

INTRODUCTION

Deep learning (DL) models are increasingly developed for auto-segmentation in radiotherapy. Qualitative analysis is of great importance for clinical implementation, next to quantitative. This study evaluates a DL segmentation model for left- and right-sided locally advanced breast cancer both quantitatively and qualitatively.

METHODS

For each side a DL model was trained, including primary breast CTV (CTVp), lymph node levels 1-4, heart, lungs, humeral head, thyroid and esophagus. For evaluation, both automatic segmentation, including correction of contours when needed, and manual delineation was performed and both processes were timed. Quantitative scoring with dice-similarity coefficient (DSC), 95% Hausdorff Distance (95%HD) and surface DSC (sDSC) was used to compare both the automatic (not-corrected) and corrected contours with the manual contours. Qualitative scoring was performed by five radiotherapy technologists and five radiation oncologists using a 3-point Likert scale.

RESULTS

Time reduction was achieved using auto-segmentation in 95% of the cases, including correction. The time reduction (mean ± std) was 42.4% ± 26.5% and 58.5% ± 19.1% for OARs and CTVs, respectively, corresponding to an absolute mean reduction (hh:mm:ss) of 00:08:51 and 00:25:38. Good quantitative results were achieved before correction, e.g. mean DSC for the right-sided CTVp was 0.92 ± 0.06, whereas correction statistically significantly improved this contour by only 0.02 ± 0.05, respectively. In 92% of the cases, auto-contours were scored as clinically acceptable, with or without corrections.

CONCLUSIONS

A DL segmentation model was trained and was shown to be a time-efficient way to generate clinically acceptable contours for locally advanced breast cancer.

摘要

引言

深度学习(DL)模型越来越多地被开发用于放射治疗中的自动分割。除了定量分析外,定性分析对于临床应用也非常重要。本研究对左右侧局部晚期乳腺癌的DL分割模型进行了定量和定性评估。

方法

针对每一侧训练一个DL模型,包括原发性乳腺临床靶区(CTVp)、1-4级淋巴结、心脏、肺、肱骨头、甲状腺和食管。为了进行评估,进行了自动分割(必要时校正轮廓)和手动勾画,并对这两个过程进行计时。使用骰子相似系数(DSC)、95%豪斯多夫距离(95%HD)和表面DSC(sDSC)进行定量评分,以比较自动(未校正)和校正后的轮廓与手动轮廓。由五名放射治疗技术人员和五名放射肿瘤学家使用3点李克特量表进行定性评分。

结果

95%的病例使用自动分割(包括校正)实现了时间减少。OARs和CTVs的时间减少(平均值±标准差)分别为42.4%±26.5%和58.5%±19.1%,分别对应于绝对平均减少(小时:分钟:秒)00:08:51和00:25:38。校正前取得了良好的定量结果,例如右侧CTVp的平均DSC为0.92±0.06,而校正后该轮廓在统计学上仅显著改善了0.02±0.05。在92%的病例中,自动轮廓在有或没有校正的情况下被评为临床可接受。

结论

训练了一个DL分割模型,结果表明它是一种为局部晚期乳腺癌生成临床可接受轮廓的高效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e656/10205480/22dabcc15c20/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验