Suppr超能文献

深度学习分割模型在局部区域性乳腺癌放射治疗中的训练、验证和临床应用。

Training, validation, and clinical implementation of a deep-learning segmentation model for radiotherapy of loco-regional breast cancer.

机构信息

Department of Radiotherapy, Cancer Clinic, St. Olavs Hospital, Trondheim, Norway.

Department of Oncology, Ålesund Hospital, Ålesund, Norway.

出版信息

Radiother Oncol. 2022 Aug;173:62-68. doi: 10.1016/j.radonc.2022.05.018. Epub 2022 May 23.

Abstract

AIM

To train and validate a comprehensive deep-learning (DL) segmentation model for loco-regional breast cancer with the aim of clinical implementation.

METHODS

DL segmentation models for 7 clinical target volumes (CTVs) and 11 organs at risk (OARs) were trained on 170 left-sided breast cancer cases from two radiotherapy centres in Norway. Another 30 patient cases were used for validation, which included the evaluation of Dice similarity coefficient and Hausdorff distance, qualitative scoring according to clinical usability, and relevant dosimetric parameters. The manual inter-observer variation (IOV) was also evaluated and served as a benchmark. Delineation of the target volumes followed the ESTRO guidelines.

RESULTS

Based on the geometric similarity metrics, the model performed significantly better than IOV for most structures. Qualitatively, no or only minor corrections were required for 14% and 71% of the CTVs and 72% and 26% of the OARs, respectively. Major corrections were required for 15% of the CTVs and 2% of the OARs. The most frequent corrections occurred in the cranial and caudal parts of the structures. The dose coverage, based on D98 > 95%, was fulfilled for 100% and 89% of the breast and lymph node CTVs, respectively. No differences in OAR dose parameters were considered clinically relevant. The model was implemented in a commercial treatment planning system, which generates the structures in 1.5 min.

CONCLUSION

Convincing results from the validation led to the decision of clinical implementation. The clinical use will be monitored regarding applicability, standardization and efficiency.

摘要

目的

训练和验证一个全面的深度学习(DL)局部乳腺癌分割模型,旨在实现临床应用。

方法

在挪威的两个放射治疗中心,对 170 例左侧乳腺癌病例进行了 7 个临床靶区(CTV)和 11 个危及器官(OAR)的 DL 分割模型训练。另外 30 例患者病例用于验证,包括评估 Dice 相似系数和 Hausdorff 距离、根据临床可用性进行定性评分以及相关剂量学参数。还评估了手动观察者间变异(IOV),并将其作为基准。靶区的勾画遵循 ESTRO 指南。

结果

基于几何相似性指标,该模型在大多数结构上的性能明显优于 IOV。定性分析结果表明,CTV 和 OAR 分别有 14%和 71%、72%和 26%的结构无需或只需轻微修正,需要较大修正的结构分别占 15%和 2%。最常见的修正发生在结构的颅侧和尾侧部分。基于 D98>95%的剂量覆盖,分别有 100%和 89%的乳房和淋巴结 CTV 满足要求。OAR 剂量参数的差异不被认为具有临床相关性。该模型已在商业治疗计划系统中实现,生成结构的时间为 1.5 分钟。

结论

验证结果令人信服,因此决定进行临床应用。将对该模型的临床应用的适用性、标准化和效率进行监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验