Suppr超能文献

用于析氢反应的高熵合金的快速高温液体冲击合成

Rapid High-Temperature Liquid Shock Synthesis of High-Entropy Alloys for Hydrogen Evolution Reaction.

作者信息

Cui Xiaoya, Liu Yanchang, Wang Xiaoyang, Tian Xinlong, Wang Yingxue, Zhang Ge, Liu Tao, Ding Jia, Hu Wenbin, Chen Yanan

机构信息

School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China.

Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China.

出版信息

ACS Nano. 2024 Jan 30;18(4):2948-2957. doi: 10.1021/acsnano.3c07703. Epub 2024 Jan 16.

Abstract

High-entropy-alloy nanoparticles (HEA-NPs) show great potential as electrocatalysts for water splitting, fuel cells, CO conversion, etc. However, fine-tuning the surface, morphology, structure, and crystal phase of HEA remains a great challenge. Here, the high-temperature liquid shock (HTLS) technique is applied to produce HEA-NPs, e.g., PtCoNiRuIr HEA-NPs, with tunable elemental components, ultrafine particle size, controlled crystal phases, and lattice strains. HTLS directly applied Joule heating on the liquid mixture of metal precursors, capping agents, and reducing agents, which is feasible for controlling the morphology and structure such as the atomic arrangement of the resulting products, thereby facilitating the rationally designed nanocatalysts. Impressively, the as-obtained PtCoNiRuIr HEA-NPs delivered superior activity and long-term stability for the hydrogen evolution reaction (HER), with low overpotentials at 10 mA cm and 1 A cm of only 18 and 408 mV, respectively, and 10000 CV stable cycles in 0.5 M HSO. Furthermore, in the near future, by combining the HTLS method with artificial intelligence (AI) and theoretical calculations, it is promising to provide an advanced platform for the high-throughput synthesis of HEA nanocatalysts with optimized performance for various energy applications, which is of great significance for achieving a carbon-neutral society with an effective and environmentally friendly energy system.

摘要

高熵合金纳米颗粒(HEA-NPs)作为用于水分解、燃料电池、CO转化等的电催化剂显示出巨大潜力。然而,对HEA的表面、形态、结构和晶相进行微调仍然是一个巨大挑战。在此,高温液体冲击(HTLS)技术被用于制备具有可调元素组成、超细粒径、可控晶相和晶格应变的HEA-NPs,例如PtCoNiRuIr HEA-NPs。HTLS直接对金属前驱体、封端剂和还原剂的液体混合物施加焦耳热,这对于控制所得产物的形态和结构(如原子排列)是可行的,从而有助于合理设计纳米催化剂。令人印象深刻的是,所获得的PtCoNiRuIr HEA-NPs在析氢反应(HER)中表现出优异的活性和长期稳定性,在10 mA cm和1 A cm下的低过电位分别仅为18和408 mV,并且在0.5 M HSO中具有10000次循环伏安稳定循环。此外,在不久的将来,通过将HTLS方法与人工智能(AI)和理论计算相结合,有望为高通量合成具有针对各种能源应用优化性能的HEA纳米催化剂提供一个先进平台,这对于通过有效且环境友好的能源系统实现碳中和社会具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验