Suppr超能文献

熵工程调控各向异性等效偶极子的自发取向极化用于超薄电磁波吸收体

Spontaneous Orientation Polarization of Anisotropic Equivalent Dipoles Harnessed by Entropy Engineering for Ultra-Thin Electromagnetic Wave Absorber.

作者信息

Wang Honghan, Xiao Xinyu, Zhai Shangru, Xue Chuang, Zheng Guangping, Zhang Deqing, Che Renchao, Cheng Junye

机构信息

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.

School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China.

出版信息

Nanomicro Lett. 2024 Sep 26;17(1):19. doi: 10.1007/s40820-024-01507-0.

Abstract

The synthesis of carbon supporter/nanoscale high-entropy alloys (HEAs) electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes. Electron migration modes within HEAs as manipulated by the electronegativity, valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles. Herein, enlightened by skin-like effect, a reformative carbothermal shock method using carbonized cellulose paper (CCP) as carbon supporter is used to preserve the oxygen-containing functional groups (O·) of carbonized cellulose fibers (CCF). Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·. Meanwhile, the electron migration mode of switchable electron-rich sites promotes the orientation polarization of anisotropic equivalent dipoles. By virtue of the reinforcement strategy, CCP/HEAs composite prepared by 35% molar ratio of Mn element (CCP/HEAs-Mn) achieves efficient electromagnetic wave (EMW) absorption of - 51.35 dB at an ultra-thin thickness of 1.03 mm. The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations, which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices (e.g., ultra-wideband bandpass filter).

摘要

通过碳热冲击法合成碳载体/纳米级高熵合金(HEAs)电磁响应复合材料已被确定为一种用于导电/介电基因协同竞争工程的先进策略。由组成元素的电负性、价电子构型和摩尔比例所操控的HEAs内部电子迁移模式决定了等效偶极子的稳态和效率。在此,受趋肤效应启发,采用以碳化纤维素纸(CCP)为碳载体的改良碳热冲击法来保留碳化纤维素纤维(CCF)的含氧官能团(O·)。HEAs的成核以及标志性核壳CCF/HEAs异质界面的构建与由O·诱导的碳代谢紧密相连。同时,可切换富电子位点的电子迁移模式促进了各向异性等效偶极子的取向极化。借助该增强策略,由35%摩尔比的Mn元素制备的CCP/HEAs复合材料(CCP/HEAs-Mn)在1.03 mm的超薄厚度下实现了-51.35 dB的高效电磁波(EMW)吸收。通过将理论计算与实验表征相结合,阐明了基于HEAs的EMW吸收材料所产生的介电性能机制,这为电磁功能器件(如超宽带带通滤波器)的模拟和实际应用提供了理论依据和可行策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/802c/11427666/68c63cdd0eb9/40820_2024_1507_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验