Suppr超能文献

机器学习和患者报告结局在转移性乳腺癌疾病进展的纵向监测中的应用:一项多中心、回顾性分析。

Machine learning and patient-reported outcomes for longitudinal monitoring of disease progression in metastatic breast cancer: a multicenter, retrospective analysis.

机构信息

Department of Obstetrics & Gynecology, Heidelberg University Hospital, Heidelberg, Germany.

Department of Obstetrics & Gynecology, Heidelberg University Hospital, Heidelberg, Germany; National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany; MD Anderson Center for INSPiRED Cancer Care (Integrated Systems for Patient-Reported Data), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Eur J Cancer. 2023 Jul;188:111-121. doi: 10.1016/j.ejca.2023.04.019. Epub 2023 Apr 29.

Abstract

BACKGROUND

Assessments of health-related quality of life (HRQoL) play an important role in transition to palliative care for women with metastatic breast cancer. We developed machine learning (ML) algorithms to analyse longitudinal HRQoL data and identify patients who may benefit from palliative care due to disease progression.

METHODS

We recruited patients from two institutions and administered the EuroQoL Visual Analog Scale (EQ-VAS) via an online platform over a 6-month period. We trained a regularised regression algorithm using 10-fold cross-validation to determine if a patient was at high or low risk of disease progression based on changes in the EQ-VAS scores using data of one institution and validated the performance on data of the other institution. Progression-free survival (PFS) was the end-point. We conducted Kaplan-Meier and Cox regression analysis adjusted for clinical risk factors.

RESULTS

Of 179 patients, 98 (54.7%) had progressive disease after a median follow-up of 14weeks. Using EQ-VAS scores collected at weeks 1-6 to predict disease progression at week 12, in the validation set (n = 63), PFS was significantly lower in the intelligent EQ-VAS high-risk versus low-risk group: median PFS 7 versus 10weeks, log-rank P < 0.038). Intelligent EQ-VAS had the strongest association with PFS (adjusted hazard ratio 2.69, 95% confidence interval 1.17-6.18, P = 0.02).

CONCLUSION

ML algorithms can analyse changes in longitudinal HRQoL data to identify patients with disease progression earlier than standard follow-up methods. Intelligent EQ-VAS scores were identified as independent prognostic factor. Future studies may validate these results to remotely monitor patients.

摘要

背景

健康相关生活质量(HRQoL)评估在转移性乳腺癌女性向姑息治疗过渡中起着重要作用。我们开发了机器学习(ML)算法来分析纵向 HRQoL 数据,并确定由于疾病进展可能受益于姑息治疗的患者。

方法

我们从两个机构招募了患者,并通过在线平台在 6 个月内使用欧洲五维健康量表视觉模拟量表(EQ-VAS)进行评估。我们使用 10 折交叉验证训练正则化回归算法,根据 EQ-VAS 评分的变化来确定患者基于一个机构的数据处于疾病进展高风险或低风险,并用另一个机构的数据验证性能。无进展生存期(PFS)是终点。我们进行了 Kaplan-Meier 和 Cox 回归分析,调整了临床危险因素。

结果

在 179 名患者中,中位随访 14 周后 98 名(54.7%)发生疾病进展。在验证集(n=63)中,使用第 1-6 周的 EQ-VAS 评分预测第 12 周的疾病进展,智能 EQ-VAS 高风险与低风险组的 PFS 显著降低:中位 PFS 分别为 7 周和 10 周,对数秩 P<0.038)。智能 EQ-VAS 与 PFS 相关性最强(调整后的危险比 2.69,95%置信区间 1.17-6.18,P=0.02)。

结论

ML 算法可以分析纵向 HRQoL 数据的变化,以便比标准随访方法更早地识别出疾病进展的患者。智能 EQ-VAS 评分被确定为独立的预后因素。未来的研究可能会验证这些结果,以远程监测患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验