Suppr超能文献

基于脉冲控制的正时滞神经网络的输入状态稳定性。

Input-to-state stability of positive delayed neural networks via impulsive control.

机构信息

School of Electrical Engineering, Guangxi University, Nanning 530004, China.

School of Mathematics and Information Science, Guangxi University, Nanning 530004, China.

出版信息

Neural Netw. 2023 Jul;164:576-587. doi: 10.1016/j.neunet.2023.05.011. Epub 2023 May 12.

Abstract

This paper is concerned with the positivity and impulsive stabilization of equilibrium points of delayed neural networks (DNNs) subject to bounded disturbances. With the aid of the continuous dependence theorem for impulsive delay differential equations, a relaxed positivity condition is derived, which allows the neuron interconnection matrix to be Metzler if the activation functions satisfy a certain condition. The notion of input-to-state stability (ISS) is introduced to characterize internal global stability and disturbance attenuation performance for impulsively controlled DNNs. The ISS property is analyzed by employing a time-dependent max-separable Lyapunov function which is able to capture the positivity characterization and hybrid structure of the considered DNNs. A ranged dwell-time-dependent ISS condition is obtained, which allows to design an impulsive control law via partial state variables. As a byproduct, an improved global exponential stability criterion for impulse-free positive DNNs is obtained. The applicability of the achieved results is illustrated through three numerical examples.

摘要

本文研究了具有界干扰的时滞神经网络平衡点的正定性和脉冲稳定性。借助脉冲时滞微分方程的连续依赖性定理,推导出了一个更宽松的正定性条件,如果激活函数满足一定条件,则允许神经元互联矩阵是 Metzler 矩阵。引入输入状态稳定性(ISS)的概念来描述脉冲控制的时滞神经网络的内部全局稳定性和干扰衰减性能。通过使用能够捕捉所考虑的 DNN 的正定性特征和混合结构的时变最大可分离 Lyapunov 函数来分析 ISS 性质。得到了一个范围停留时间相关的 ISS 条件,该条件允许通过部分状态变量设计脉冲控制律。作为副产品,得到了脉冲自由正定时滞神经网络的改进全局指数稳定性准则。通过三个数值示例说明了所得到的结果的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验