Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France.
GFMC, Dpto. Física de Materiales. Universidad de Ciencias Físicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.
Nat Commun. 2023 May 25;14(1):3010. doi: 10.1038/s41467-023-38608-0.
Memristors, a cornerstone for neuromorphic electronics, respond to the history of electrical stimuli by varying their electrical resistance across a continuum of states. Much effort has been recently devoted to developing an analogous response to optical excitation. Here we realize a novel tunnelling photo-memristor whose behaviour is bimodal: its resistance is determined by the dual electrical-optical history. This is obtained in a device of ultimate simplicity: an interface between a high-temperature superconductor and a transparent semiconductor. The exploited mechanism is a reversible nanoscale redox reaction between both materials, whose oxygen content determines the electron tunnelling rate across their interface. The redox reaction is optically driven via an interplay between electrochemistry, photovoltaic effects and photo-assisted ion migration. Besides their fundamental interest, the unveiled electro-optic memory effects have considerable technological potential. Especially in combination with high-temperature superconductivity which, in addition to facilitating low-dissipation connectivity, brings photo-memristive effects to the realm of superconducting electronics.
忆阻器是神经形态电子学的基石,其电阻会根据电激励的历史在连续的状态中变化。最近,人们投入了大量精力来开发对光激励的类似响应。在这里,我们实现了一种新型的隧穿光电忆阻器,其行为是双模态的:其电阻由双电-光历史决定。这是在一个极其简单的器件中实现的:高温超导体和透明半导体之间的界面。所利用的机制是两种材料之间的可逆纳米级氧化还原反应,其氧含量决定了电子穿过界面的隧穿速率。氧化还原反应通过电化学、光伏效应和光辅助离子迁移之间的相互作用来驱动。除了它们的基本兴趣之外,揭示的光电记忆效应具有相当大的技术潜力。特别是与高温超导相结合,除了促进低损耗连接之外,还将光电记忆效应带入超导电子学领域。