Department of Radiology, Seoul National University Hospital, Seoul, Korea
Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
Curr Med Imaging. 2024;20:e250523217310. doi: 10.2174/1573405620666230525104809.
Whether deep learning-based CT reconstruction could improve lesion conspicuity on abdominal CT when the radiation dose is reduced is controversial.
To determine whether DLIR can provide better image quality and reduce radiation dose in contrast-enhanced abdominal CT compared with the second generation of adaptive statistical iterative reconstruction (ASiR-V).
This study aims to determine whether deep-learning image reconstruction (DLIR) can improve image quality.
In this retrospective study, a total of 102 patients were included, who underwent abdominal CT using a DLIR-equipped 256-row scanner and routine CT of the same protocol on the same vendor's 64-row scanner within four months. The CT data from the 256-row scanner were reconstructed into ASiR-V with three blending levels (AV30, AV60, and AV100), and DLIR images with three strength levels (DLIR-L, DLIR-M, and DLIR-H). The routine CT data were reconstructed into AV30, AV60, and AV100. The contrast-to-noise ratio (CNR) of the liver, overall image quality, subjective noise, lesion conspicuity, and plasticity in the portal venous phase (PVP) of ASiR-V from both scanners and DLIR were compared.
The mean effective radiation dose of PVP of the 256-row scanner was significantly lower than that of the routine CT (6.3±2.0 mSv vs. 2.4±0.6 mSv; p< 0.001). The mean CNR, image quality, subjective noise, and lesion conspicuity of ASiR-V images of the 256-row scanner were significantly lower than those of ASiR-V images at the same blending factor of routine CT, but significantly improved with DLIR algorithms. DLIR-H showed higher CNR, better image quality, and subjective noise than AV30 from routine CT, whereas plasticity was significantly better for AV30.
DLIR can be used for improving image quality and reducing radiation dose in abdominal CT, compared with ASIR-V.
基于深度学习的 CT 重建技术在降低辐射剂量时是否能提高腹部 CT 病变的显示效果,目前尚存争议。
旨在比较深度学习图像重建(DLIR)与第二代自适应统计迭代重建(ASiR-V)在对比增强腹部 CT 中,能否提供更好的图像质量和降低辐射剂量。
本研究旨在确定深度学习图像重建(DLIR)是否能改善图像质量。
本回顾性研究共纳入 102 例患者,均在四个月内于配备 DLIR 的 256 排扫描仪及同一厂商的 64 排扫描仪上分别行 DLIR 腹部 CT 及常规 CT 检查,256 排扫描仪的 CT 数据采用三种混合水平(ASiR-V30、ASiR-V60 和 ASiR-V100)及三种强度水平(DLIR-L、DLIR-M 和 DLIR-H)进行 ASiR-V 重建,常规 CT 数据则采用 ASiR-V30、ASiR-V60 和 ASiR-V100 进行重建。比较两种扫描仪的 ASiR-V 及 DLIR 的肝实质对比噪声比(CNR)、整体图像质量、主观噪声、病变显示度和门静脉期(PVP)可塑形性。
256 排扫描仪 PVP 的有效辐射剂量明显低于常规 CT(6.3±2.0 mSv 比 2.4±0.6 mSv;p<0.001)。256 排扫描仪 ASiR-V 图像的平均 CNR、图像质量、主观噪声和病变显示度均明显低于常规 CT 同混合水平的 ASiR-V 图像,但经 DLIR 算法处理后均明显改善。DLIR-H 的 CNR、图像质量和主观噪声均明显优于常规 CT 的 ASiR-V30,而可塑形性则明显优于 ASiR-V30。
与 ASiR-V 相比,DLIR 可用于提高腹部 CT 的图像质量和降低辐射剂量。