Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
Eur Radiol. 2022 Aug;32(8):5499-5507. doi: 10.1007/s00330-022-08647-0. Epub 2022 Mar 3.
To evaluate the usefulness of deep learning image reconstruction (DLIR) to improve the image quality of dual-energy computed tomography (DECT) of the abdomen, compared to hybrid iterative reconstruction (IR).
This study included 40 patients who underwent contrast-enhanced DECT of the abdomen. Virtual monochromatic 40-, 50-, and 70-keV and iodine density images were reconstructed using three reconstruction algorithms, including hybrid IR (ASiR-V50%) and DLIR (TrueFidelity) at medium- and high-strength level (DLIR-M and DLIR-H, respectively). The standard deviation of attenuation in liver parenchyma was measured as image noise. The contrast-to-noise ratio (CNR) for the portal vein on portal venous phase CT was calculated. The vessel conspicuity and overall image quality were graded on a 5-point scale ranging from 1 (poor) to 5 (excellent). The comparative scale of lesion conspicuity in 47 abdominal solid lesions was evaluated on a 5-point scale ranging from 0 (best) to -4 (markedly inferior).
The image noise of virtual monochromatic 40-, 50 -, and 70-keV and iodine density images was significantly decreased by DLIR compared to hybrid IR (p < 0.0001). The CNR was significantly higher in DLIR-H and DLIR-M than in hybrid IR (p < 0.0001). The vessel conspicuity and overall image quality scores were also significantly greater in DLIR-H and DLIR-M than in hybrid IR (p < 0.05). The lesion conspicuity scores for DLIR-M and DLIR-H were significantly higher than those for hybrid IR in the virtual monochromatic image of all energy levels (p ≤ 0.001).
DLIR improves vessel conspicuity, CNR, and lesion conspicuity of virtual monochromatic and iodine density images in abdominal contrast-enhanced DECT, compared to hybrid IR.
• Deep learning image reconstruction (DLIR) is useful for reducing image noise and improving the CNR of visual monochromatic 40-, 50-, and 70-keV images in dual-energy CT. • DLIR can improve lesion conspicuity of abdominal solid lesions on virtual monochromatic images compared to hybrid iterative reconstruction. • DLIR can also be applied to iodine density maps and significantly improves their image quality.
与混合迭代重建(IR)相比,评估深度学习图像重建(DLIR)在提高腹部双能 CT(DECT)图像质量方面的作用。
本研究纳入 40 例行腹部增强 DECT 检查的患者。使用三种重建算法(混合 IR [ASiR-V50%]和 DLIR [TrueFidelity]在中强度和高强度水平)重建虚拟单能 40keV、50keV 和 70keV 及碘密度图像。测量肝实质的衰减标准差作为图像噪声。计算门静脉期 CT 的门静脉对比噪声比(CNR)。采用 5 分制(1 分为差,5 分为优)对门静脉期图像的血管显影程度和整体图像质量进行分级。采用 5 分制(0 分为最佳,-4 分为明显劣于)评估 47 个腹部实体病灶的病灶显影对比程度。
与混合 IR 相比,DLIR 显著降低了虚拟单能 40keV、50keV 和 70keV 及碘密度图像的噪声(p<0.0001)。DLIR-H 和 DLIR-M 的 CNR 明显高于混合 IR(p<0.0001)。DLIR-H 和 DLIR-M 的血管显影程度和整体图像质量评分也明显高于混合 IR(p<0.05)。在所有能量水平的虚拟单能图像中,DLIR-M 和 DLIR-H 的病灶显影评分明显高于混合 IR(p≤0.001)。
与混合 IR 相比,DLIR 可提高腹部增强 DECT 虚拟单能和碘密度图像的血管显影程度、CNR 和病灶显影程度。
深度学习图像重建(DLIR)有助于降低双能 CT 中的视觉单能 40keV、50keV 和 70keV 图像的噪声并提高其对比度噪声比(CNR)。
与混合迭代重建相比,DLIR 可提高腹部实体病灶在虚拟单能图像上的病灶显影程度。
DLIR 也可应用于碘密度图,并可显著改善其图像质量。