Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA.
Environ Toxicol Chem. 2023 Sep;42(9):2040-2053. doi: 10.1002/etc.5680. Epub 2023 Jul 19.
A core challenge for ecological risk assessment is to integrate molecular responses into a chain of causality to organismal or population-level outcomes. Bioenergetic theory may be a useful approach for integrating suborganismal responses to predict organismal responses that influence population dynamics. We describe a novel application of dynamic energy budget (DEB) theory in the context of a toxicity framework (adverse outcome pathways [AOPs]) to make quantitative predictions of chemical exposures to individuals, starting from suborganismal data. We use early-life stage exposure of Fundulus heteroclitus to dioxin-like chemicals (DLCs) and connect AOP key events to DEB processes through "damage" that is produced at a rate proportional to the internal toxicant concentration. We use transcriptomic data of fish embryos exposed to DLCs to translate molecular indicators of damage into changes in DEB parameters (damage increases somatic maintenance costs) and DEB models to predict sublethal and lethal effects on young fish. By changing a small subset of model parameters, we predict the evolved tolerance to DLCs in some wild F. heteroclitus populations, a data set not used in model parameterization. The differences in model parameters point to reduced sensitivity and altered damage repair dynamics as contributing to this evolved resistance. Our methodology has potential extrapolation to untested chemicals of ecological concern. Environ Toxicol Chem 2023;42:2040-2053. © 2023 Oak Ridge National Laboratory and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
生态风险评估的核心挑战是将分子反应整合到从亚生物体到生物体或种群水平结果的因果链中。生物能量学理论可能是一种将亚生物体反应整合起来预测影响种群动态的生物体反应的有用方法。我们在毒性框架(不良结局途径 [AOP])的背景下描述了动态能量预算 (DEB) 理论的新应用,以便根据亚生物体数据对个体的化学暴露进行定量预测。我们使用 Fundulus heteroclitus 的早期生活阶段暴露于二恶英样化学物质 (DLCs),并通过与 DEB 过程的“损伤”连接 AOP 关键事件,该损伤以与内部毒物浓度成比例的速率产生。我们使用 DLCs 暴露的鱼胚胎的转录组数据将损伤的分子指标转化为 DEB 参数的变化(损伤增加体维持成本)和 DEB 模型,以预测对幼鱼的亚致死和致死影响。通过改变模型参数的一小部分,我们预测了一些野生 F. heteroclitus 种群对 DLCs 的进化耐受性,这是一个未用于模型参数化的数据组。模型参数的差异表明,敏感性降低和损伤修复动力学改变是导致这种进化抗性的原因。我们的方法有可能推广到具有生态意义的未测试化学物质。Environ Toxicol Chem 2023;42:2040-2053。©2023 橡树岭国家实验室和作者。环境毒理学和化学由 Wiley Periodicals LLC 代表 SETAC 出版。