Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Nutrition Unit, Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals (HUG), 1211 Geneva, Switzerland.
Cell Rep Methods. 2023 Jul 31;3(8):100545. doi: 10.1016/j.crmeth.2023.100545. eCollection 2023 Aug 28.
Wearable biosensors and smartphone applications can measure physiological variables over multiple days in free-living conditions. We measure food and drink ingestion, glucose dynamics, physical activity, heart rate (HR), and heart rate variability (HRV) in 25 healthy participants over 14 days. We develop a Bayesian inference framework to learn personal parameters that quantify circadian rhythms and physiological responses to external stressors. Modeling the effects of ingestion events on glucose levels reveals that slower glucose decay kinetics elicit larger postprandial glucose spikes, and we uncover a circadian baseline rhythm for glucose with high amplitudes in some individuals. Physical activity and circadian rhythms explain as much as 40%-65% of the HR variance, whereas the variance explained for HRV is more heterogeneous across individuals. A more complex model incorporating activity, HR, and HRV explains up to 15% of additional glucose variability, highlighting the relevance of integrating multiple biosensors to better predict glucose dynamics.
可穿戴式生物传感器和智能手机应用程序可以在自由活动条件下多天测量生理变量。我们在 14 天内测量了 25 名健康参与者的食物和饮料摄入、葡萄糖动态、身体活动、心率 (HR) 和心率变异性 (HRV)。我们开发了一个贝叶斯推断框架,以学习量化昼夜节律和对外部应激源的生理反应的个人参数。对摄入事件对血糖水平影响的建模表明,较慢的葡萄糖衰减动力学会引起更大的餐后血糖峰值,并且我们发现一些个体的葡萄糖存在高振幅的昼夜基线节律。身体活动和昼夜节律解释了高达 40%-65%的 HR 方差,而 HRV 的方差在个体之间差异更大。纳入活动、HR 和 HRV 的更复杂模型最多可解释 15%的额外葡萄糖变异性,这突出表明整合多个生物传感器以更好地预测葡萄糖动态的相关性。